OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5504–5511

Large area, freestanding GaN nanocolumn membrane with bottom subwavelength nanostructure

Yongjin Wang, Fangren Hu, Yoshiaki Kanamori, Tong Wu, and Kazuhiro Hane  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5504-5511 (2010)
http://dx.doi.org/10.1364/OE.18.005504


View Full Text Article

Enhanced HTML    Acrobat PDF (889 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose, fabricate and characterize the freestanding GaN nanocolumn membrane with bottom subwavelength nanostructures. The GaN nanocolumns are epitaxially grown on freestanding nanostructured silicon substrate that is achieved by a combination of self-assemble technique and silicon-on-insulator (SOI) technology. Optical reflection is greatly suppressed in the visible range due to the graded refractive index effect of subwavelength nanostructures. The freestanding GaN nanocolumn membrane is realized by removing silicon substrate from the backside, eliminating the silicon absorption of the emitted light and leading to a strong blue emission from the bottom side. The obtained structures also demonstrate the potential application for anti-reflective (AR) coating and GaN-Si hybrid microelectromechanical system (MEMS).

© 2010 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

History
Original Manuscript: December 4, 2009
Revised Manuscript: February 22, 2010
Manuscript Accepted: February 23, 2010
Published: March 3, 2010

Citation
Yongjin Wang, Fangren Hu, Yoshiaki Kanamori, Tong Wu, and Kazuhiro Hane, "Large area, freestanding GaN nanocolumn membrane with bottom subwavelength nanostructure," Opt. Express 18, 5504-5511 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5504


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature 386(6623), 351–359 (1997). [CrossRef]
  2. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics 1(1), 61–64 (2007). [CrossRef]
  3. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Display Technol. 3(2), 160–175 (2007). [CrossRef]
  4. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008). [CrossRef]
  5. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009). [CrossRef]
  6. H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-Brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4(6), 1059–1062 (2004). [CrossRef]
  7. Y. J. Lee, S. Y. Lin, C. H. Chiu, T. C. Lu, H. C. Kuo, S. C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett. 94(14), 141111 (2009). [CrossRef]
  8. S. M. Kim, T. Y. Park, S. J. Park, S. J. Lee, J. H. Baek, Y. C. Park, and G. Y. Jung, “Nanopatterned aluminum nitride template for high efficiency light-emitting diodes,” Opt. Express 17(17), 14791–14799 (2009). [CrossRef] [PubMed]
  9. S. W. Ryu, J. Park, J. K. Oh, D. H. Long, K. W. Kwon, Y. H. Kim, J. K. Lee, and J. H. Kim, “Analysis of improved efficiency of InGaN light-emitting diode with bottom photonic crystal fabricated by anodized aluminum oxide,” Adv. Funct. Mater. 19(10), 1650–1655 (2009). [CrossRef]
  10. F. Schulze, A. Dadgar, J. Bläsing, A. Diez, and A. Krost, “Metalorganic vapor phase epitaxy grown InGaN/GaN light-emitting diodes on Si(001) substrate,” Appl. Phys. Lett. 88(12), 121114 (2006). [CrossRef]
  11. H. W. Choi, K. N. Hui, P. T. Lai, P. Chen, X. H. Zhang, S. Tripathy, J. H. Teng, and S. J. Chua, “Lasing in GaN microdisks pivoted on Si,” Appl. Phys. Lett. 89(21), 211101 (2006). [CrossRef]
  12. S. Tripathy, V. K. X. Lin, S. L. Teo, A. Dadgar, A. Diez, J. Bläsing, and A. Krost, “InGaN/GaN light emitting diodes on nanoscale silicon on insulator,” Appl. Phys. Lett. 91(23), 231109 (2007). [CrossRef]
  13. T. Zimmermann, M. Neuburger, P. Benkart, F. J. Hernández-Guillén, C. Pietzka, M. Kunze, I. Daumiller, A. Dadgar, A. Krost, and E. Kohn, “Piezoelectric GaN Sensor Structures,” IEEE Electron Device Lett. 27(5), 309–312 (2006). [CrossRef]
  14. Z. Yang, R. N. Wang, S. Jia, D. Wang, B. S. Zhang, K. M. Lau, and K. J. Chen, “Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique,” Appl. Phys. Lett. 88(4), 041913 (2006). [CrossRef]
  15. Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, “Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells,” Nano Lett. 8(12), 4191–4195 (2008). [CrossRef]
  16. R. Calarco, R. J. Meijers, R. K. Debnath, T. Stoica, E. Sutter, and H. Lüth, “Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy,” Nano Lett. 7(8), 2248–2251 (2007). [CrossRef] [PubMed]
  17. S. D. Hersee, X. Y. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6(8), 1808–1811 (2006). [CrossRef] [PubMed]
  18. F. R. Hu, Y. Kanamori, K. Ochi, Y. Zhao, M. Wakui, and K. Hane, “A 100 nm thick InGaN/GaN multiple quantum-well column-crystallized thin film deposited on Si(111) substrate and its micromachining,” Nanotechnology 19(3), 035305 (2008). [CrossRef] [PubMed]
  19. A. Kikuchi, M. Kawai, M. Tada, and K. Kishino, “InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate,” Jpn. J. Appl. Phys. 43(No. 12A), L1524–L1526 (2004). [CrossRef]
  20. H. Sekiguchi, K. Kishino, and A. Kikuchi, “GaN/AlGaN nanocolumn ultraviolet light-emitting diodes grown on n-(111) Si by RF-plasma-assisted molecular beam epitaxy,” Electron. Lett. 44(2), 151–152 (2008). [CrossRef]
  21. H. Sameshima, M. Wakui, F. R. Hu, and K. Hane, “A freestanding GaN/HfO2 membrane grown by molecular beam epitaxy for GaN-Si hybrid MEMS,” IEEE J. Sel. Top. Quantum Electron. 15(5), 1332–1337 (2009). [CrossRef]
  22. T. Ono, N. Orimoto, S. S. Lee, T. Simizu, and M. Esashi, “RF-plasma-assisted fast atom beam etching,” Jpn. J. Appl. Phys. 39(Part 1, No. 12B), 6976–6979 (2000). [CrossRef]
  23. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009). [CrossRef]
  24. C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109 (2008). [CrossRef]
  25. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett. 93(25), 251108 (2008). [CrossRef]
  26. W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008). [CrossRef]
  27. H. B. Xu, N. Lu, D. P. Qi, J. Y. Hao, L. G. Gao, B. Zhang, and L. F. Chi, “Biomimetic antireflective Si nanopillar arrays,” Small 4(11), 1972–1975 (2008). [CrossRef] [PubMed]
  28. Y. J. Wang, F. R. Hu, Y. Kanamori, T. Wu, and K Hane, “Over 200-fold enhancement of light extraction from freestanding GaN nanocolumn slab with bottom subwavelength,” to be submitted.
  29. C. H. Chiu, P. C. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express 16(12), 8748–8754 (2008). [CrossRef] [PubMed]
  30. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods,” Adv. Mater. 21(9), 973–978 (2009). [CrossRef]
  31. C. H. Chang, Yu. Peichen, and C. S. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett. 94(5), 051114 (2009). [CrossRef]
  32. H. Y. Chen, H. W. Lin, C. Y. Wu, W. C. Chen, J. S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express 16(11), 8106–8116 (2008). [CrossRef] [PubMed]
  33. K. Kusakabe, A. Kikuchi, and K. Kishino, “Characterization of overgrown GaN layers on nano-columns grown by RF-molecular beam epitaxy,” Jpn. J. Appl. Phys. 40(Part 2, No. 3A), L192–L194 (2001). [CrossRef]
  34. C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, Y. Peichen, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett. 93(8), 081108 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited