OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5525–5540

High performance solar-selective absorbers using coated sub-wavelength gratings

Nicholas P. Sergeant, Mukul Agrawal, and Peter Peumans  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5525-5540 (2010)
http://dx.doi.org/10.1364/OE.18.005525


View Full Text Article

Enhanced HTML    Acrobat PDF (1546 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spectral control of the emissivity of surfaces is essential for efficient conversion of solar radiation into heat. We investigated surfaces consisting of sub-wavelength V-groove gratings coated with aperiodic metal-dielectric stacks. The spectral behavior of the coated gratings was modeled using rigorous coupled-wave analysis (RCWA). The proposed absorber coatings combine impedance matching using tapered metallic features with the excellent spectral selectivity of aperiodic metal-dielectric stacks. The aspect ratio of the V-groove can be tailored in order to obtain the desired spectral selectivity over a wide angular range. Coated V-groove gratings with optimal aspect ratio are predicted to have thermal emissivity below 6% at 720K while absorbing >94% of the incident light. These sub-wavelength gratings would have the potential to significantly increase the efficiency of concentrated solar thermal systems.

© 2010 OSA

OCIS Codes
(310.1620) Thin films : Interference coatings
(350.6050) Other areas of optics : Solar energy
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(310.4165) Thin films : Multilayer design

ToC Category:
Solar Energy

History
Original Manuscript: December 14, 2009
Revised Manuscript: February 27, 2010
Manuscript Accepted: February 28, 2010
Published: March 3, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Citation
Nicholas P. Sergeant, Mukul Agrawal, and Peter Peumans, "High performance solar-selective absorbers using coated sub-wavelength gratings," Opt. Express 18, 5525-5540 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5525


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Burkholder and C. Kutscher, “Heat-Loss Testing of Solel’s UVAC3 Parabolic Trough Receiver,” NREL/TP-550-42394 (2008).
  2. F. Burkholder and C. Kutscher, “Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver,” NREL/TP-550-45633 (2009).
  3. C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials, NREL/TP-520-31267 (2002).
  4. C. E. Kennedy, and H. Price, “Progress in development of high-temperature solar-selective coatings,” NREL/CP-520-36997 Proc. ISEC2005 2005 International Solar Energy Conference August 6-12, 2005, Orlando, Florida USA, ISEC2005-76039
  5. Q.-C. Zhang and D. R. Mills, “Very low-emittance solar selective surfaces using new film structures,” J. Appl. Phys. 72(7), 3013 (1992). [CrossRef]
  6. R. N. Schmidt and K. C. Park, “High-Temperature Space-Stable Selective Solar Absorber Coatings,” Appl. Opt. 4(8), 917–925 (1965). [CrossRef]
  7. I. Celanovic, F. O’Sullivan, M. Ilak, J. Kassakian, and D. Perreault, “Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications,” Opt. Lett. 29(8), 863–865 (2004). [CrossRef] [PubMed]
  8. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72(7), 075127 (2005). [CrossRef]
  9. C. E. Kennedy, “Progress to develop an advanced solar-selective coating,” 14th Biennial CSP SolarPACES Symposium, NREL/CD-550-42709 (2008)
  10. X.-F. Li, Y.-R. Chen, J. Miao, P. Zhou, Y.-X. Zheng, L.-Y. Chen, and Y. P. Lee, “High solar absorption of a multilayered thin film structure,” Opt. Express 15(4), 1907–1912 (2007). [CrossRef] [PubMed]
  11. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B 70(12), 125101 (2004). [CrossRef]
  12. A. Narayanaswamy, J. Cybulksi, and G. Chen, “1D Metallo-Dielectric Photonic Crystals as Selective Emitters for Thermophotovoltaic Applications,” Thermophotovoltaic Generation of Electricity, Sixth Conference, CP738, 215 (2004)
  13. C. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999). [CrossRef]
  14. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in one-dimensional periodic metallic photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 016609 (2006). [CrossRef] [PubMed]
  15. Y. Chen and Z. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269(2), 411–417 (2007). [CrossRef]
  16. H. Sai, Y. Kanamori, K. Hane, and H. Yugami, “Numerical study on spectral properties of tungsten one-dimensional surface-relief gratings for spectrally selective devices,” J. Opt. Soc. Am. A 22(9), 1805–1813 (2005). [CrossRef]
  17. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79(3), 033101 (2009). [CrossRef]
  18. J. T. K. Wan, “Tunable thermal emission at infrared frequencies via tungsten gratings,” Opt. Commun. 282(8), 1671–1675 (2009). [CrossRef]
  19. D. L. C. Chan, M. Soljacić, and J. D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystal slabs,” Opt. Express 14(19), 8785–8796 (2006). [CrossRef] [PubMed]
  20. H. Sai and H. Yugami, “Thermophotovoltaic generation with selective radiators based on tungsten surface gratings,” Appl. Phys. Lett. 85(16), 3399 (2004). [CrossRef]
  21. H. Sai, Y. Kanamori, K. Hane, H. Yugami, and M. Yamaguchi, “Numerical study on tungsten selective radiators with various micro/nano structures,” Photovoltaic Specialists Conference, 2005. IEEE, 762-765 (2005)
  22. H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, “Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region,” J. Opt. Soc. Am. A 18(7), 1471–1476 (2001). [CrossRef]
  23. C.-F. Lin, C.-H. Chao, L. A. Wang, and W.-C. Cheng, “Blackbody radiation modified to enhance blue spectrum,” J. Opt. Soc. Am. B 22(7), 1517 (2005). [CrossRef]
  24. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380 (2003). [CrossRef]
  25. T. Trupke, P. Wurfel, and M. A. Green, “Comment on Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 84(11), 1997 (2004). [CrossRef]
  26. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004). [CrossRef] [PubMed]
  27. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009). [CrossRef]
  28. O. Pincon, M. Agrawal, and P. Peumans, “Aperiodic metallodielectric stacks for thermophotovoltaic applications,” submitted.
  29. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008). [CrossRef]
  30. P. Yeh, Optical waves in layered media, (John Wiley & Sons, Inc., New Jersey, 1998)
  31. E. B. Palik, Handbook of Optical Constants, (Academic Press, New York, 1985)
  32. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27(6), 1203 (1988). [CrossRef] [PubMed]
  33. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Introduction to Heat Transfer (John Wiley & Sons, New Jersey, 2007)
  34. S. A. Furman, A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Frontieres, Gif-sur-Yvette, 1992).
  35. A. V. Tikhonravov, M. K. Trubetskov, and G. W. DeBell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493 (1996). [CrossRef] [PubMed]
  36. B. T. Sullivan and J. A. Dobrowolski, “Implementation of a numerical needle method for thin-film design,” Appl. Opt. 35(28), 5484 (1996). [CrossRef] [PubMed]
  37. T. Karabacak, J. S. DeLuca, P.-I. Wang, G. A. Ten Eyck, D. Ye, G.-C. Wang, and T.-M. Lu, “Low temperature melting of copper nanorod arrays,” J. Appl. Phys. 99(6), 064304 (2006). [CrossRef]
  38. C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro-structured selective tungsten emitters, CP653, Thermophotovoltaics Generation of Electricity: 5th Conference, 164 (2003)
  39. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  40. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited