OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5562–5573

Optimization of thermal ghost imaging: high-order correlations vs. background subtraction

Kam Wai C. Chan, Malcolm N. O’Sullivan, and Robert W. Boyd  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5562-5573 (2010)
http://dx.doi.org/10.1364/OE.18.005562


View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare the performance of high-order thermal ghost imaging with that of conventional (that is, lowest-order) thermal ghost imaging for different data processing methods. Particular attention is given to high-order thermal ghost imaging with background normalization and conventional ghost imaging with background subtraction. The contrast-to-noise ratio (CNR) of the ghost image is used as the figure of merit for the comparison. We find analytically that the CNR of the normalized high-order ghost image is inversely proportional to the square root of the number of transmitting pixels of the object. This scaling law is independent of the exponents used in calculating the high-order correlation and is the same as that of conventional ghost imaging with background subtraction. We find that no data processing procedure performs better than lowest-order ghost imaging with background subtraction. Our results are found to be able to explain the observations of a recent experiment [Chen et al., arXiv:0902.3713v3 [quant-ph]].

© 2010 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(110.1650) Imaging systems : Coherence imaging

ToC Category:
Imaging Systems

History
Original Manuscript: January 4, 2010
Revised Manuscript: January 26, 2010
Manuscript Accepted: January 27, 2010
Published: March 3, 2010

Citation
Kam Wai C. Chan, Malcolm N. O'Sullivan, and Robert W. Boyd, "Optimization of thermal ghost imaging: high-order correlations vs. background subtraction," Opt. Express 18, 5562-5573 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5562


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, "Optical imaging by means of two-photon quantum entanglement," Phys. Rev. A 52, R3429-R3432 (1995). [CrossRef] [PubMed]
  2. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation," Phys. Rev. Lett. 93, 093602 (2004); [CrossRef] [PubMed]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Correlated imaging, quantum and classical," Phys. Rev. A 70, 013802 (2004). [CrossRef]
  4. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, "Two-Photon Imaging with Thermal Light," Phys. Rev. Lett. 94, 063601 (2005). [CrossRef] [PubMed]
  5. Y. Bromberg, O. Katz, and Y. Silberberg, "Ghost imaging with a single detector," Phys. Rev. A 79, 053840 (2009). [CrossRef]
  6. G. Scarcelli, V. Berardi, and Y. Shih "Can Two-Photon Correlation of Chaotic Light Be Considered as Correlation of Intensity Fluctuations?" Phys. Rev. Lett. 96, 063602 (2006). [CrossRef] [PubMed]
  7. A. Gatti, M. Bondani, L. A. Lugiato, M. G. A. Paris, and C. Fabre, "Comment on Can Two-Photon Correlation of Chaotic Light Be Considered as Correlation of Intensity Fluctuations?" Phys. Rev. Lett. 98, 039301 (2007). [CrossRef] [PubMed]
  8. B. I. Erkmen and J. H. Shapiro, "Unified theory of ghost imaging with Gaussian-state light," Phys. Rev. A 77, 043809 (2008). [CrossRef]
  9. L.-G. Wang, S. Qamar, S.-Y. Zhu, and M. S. Zubairy, "Hanbury Brown-Twiss effect and thermal light ghost imaging: A unified approach," Phys. Rev. A 79, 033835 (2009). [CrossRef]
  10. J. H. Shapiro, "Computational ghost imaging," Phys. Rev. A 78, 061802 (2008). [CrossRef]
  11. R. Meyers, K. S. Deacon, and Y. H. Shih, "Ghost-imaging experiment by measuring reflected photons," Phys. Rev. A 77, 041801 (2008). [CrossRef]
  12. J. Cheng and S. Han, "Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction," Phys. Rev. Lett. 92, 093903 (2004). [CrossRef] [PubMed]
  13. G. Scarcelli, V. Berardi, and Y. Shih, "Phase-conjugate mirror via two-photon thermal light imaging," Appl. Phys. Lett. 88, 061106 (2006). [CrossRef]
  14. L. Basano and P. Ottonello, "Experiment in lensless ghost imaging with thermal light," Appl. Phys. Lett. 89, 091109 (2006) [CrossRef]
  15. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light," Phys. Rev. Lett. 94, 183602 (2005). [CrossRef] [PubMed]
  16. L. Basano and P. Ottonello, "Use of an intensity threshold to improve the visibility of ghost images produced by incoherent light," Appl. Opt. 46, 6291-6296 (2007). [CrossRef] [PubMed]
  17. Y. Bai and S. Han, "Ghost imaging with thermal light by third-order correlation," Phys. Rev. A. 76, 043828 (2007). [CrossRef]
  18. L.-H. Ou and L.-M. Kuang, "Ghost imaging with third-order correlated thermal light," J. Phys. B: At. Mol. Opt. Phys. 40, 1833-1844 (2007). [CrossRef]
  19. D.-Z. Cao, J. Xiong, S.-H. Zhang, L.-F. Lin, L. Gao, and K. Wang, "Enhancing visibility and resolution in Nth order intensity correlation of thermal light," Appl. Phys. Lett. 92, 201102 (2008). [CrossRef]
  20. I. N. Agafonov, M. V. Chekhova, T. Sh. Iskhakov, and A. N. Penin, "High-visibility multiphoton interference of Hanbury Brown-Twiss type for classical light," Phys. Rev. A 77, 053801 (2008). [CrossRef]
  21. Q. Liu, X.-H. Chen, K.-H. Luo, W. Wu, and L.-A. Wu, "Role of multiphoton bunching in high-order ghost imaging with thermal light sources," Phys. Rev. A 79, 053844 (2009). [CrossRef]
  22. K. W. C. Chan, M. N. O’Sullivan, and R. W. Boyd, "High-Order Thermal Ghost Imaging," Opt. Lett. 34, 3343-3345 (2009). [CrossRef] [PubMed]
  23. X.-H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, L.-A. Wu, "Arbitrary-order lensless ghost imaging with thermal light," arXiv:0902.3713v3 [quant-ph].
  24. O. Katz, Y. Bromberg, and Y. Silberberg, "Compressive ghost imaging," Appl. Phys. Lett. 95, 131110 (2009). [CrossRef]
  25. L. Basano and P. Ottonello, "A conceptual experiment on single-beam coincidence detection with pseudothermal light," Opt. Express 15, 12386-12394 (2007). [CrossRef] [PubMed]
  26. D. Cao, J. Xiong, and K. Wang, "Geometrical optics in correlated imaging systems," Phys. Rev. A 71, 013801 (2005). [CrossRef]
  27. Y. Cai and F. Wang, "Lensless imaging with partially coherent light," Opt. Lett. 32, 205-207 (2007). [CrossRef] [PubMed]
  28. B. I. Erkmen and J. H. Shapiro, "Signal-to-noise ratio of Gaussian-state ghost imaging," Phys. Rev. A 79, 023833 (2009). [CrossRef]
  29. D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, "Correlated two-photon imaging with true thermal light," Opt. Lett. 30, 2354-2356 (2005). [CrossRef] [PubMed]
  30. D. V. Hinkley, "On the Ratio of Two Correlated Normal Random Variables," Biometrika 56, 635-639 (1969). [CrossRef]
  31. A. Cedilnik, K. Košmelj, and A. Blejec, "Ratio of Two Random Variables: A Note on the Existence of its Moments," Metodološki zvezki 3, 1-7 (2006).
  32. R. C. Geary, "The Frequency Distribution of the Quotient of Two Normal Variates," J. Roy. Statistical Society 93, 442-446 (1930). [CrossRef]
  33. K. N. Boyadzhiev, "Exponential Polynomials, Stirling Numbers, and Evaluation of Some Gamma Integrals," Abstract and Applied Analysis 2009, 168672 (2009). [CrossRef]
  34. S. Roman, The Umbral Calculus (Academic Press, New York, 1984), pp. 63-67 and 82-87.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited