OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5602–5608

Generalization of the Lyot filter and its application to snapshot spectral imaging

Alistair Gorman, David William Fletcher-Holmes, and Andrew Robert Harvey  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5602-5608 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A snapshot multi-spectral imaging technique is described which employs multiple cascaded birefringent interferometers to simultaneously spectrally filter and demultiplex multiple spectral images onto a single detector array. Spectral images are recorded directly without the need for inversion and without rejection of light and so the technique offers the potential for high signal-to-noise ratio. An example of an eight-band multi-spectral movie sequence is presented; we believe this is the first such demonstration of a technique able to record multi-spectral movie sequences without the need for computer reconstruction.

© 2010 OSA

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Imaging Systems

Original Manuscript: January 28, 2010
Revised Manuscript: February 11, 2010
Manuscript Accepted: February 11, 2010
Published: March 3, 2010

Alistair Gorman, David William Fletcher-Holmes, and Andrew Robert Harvey, "Generalization of the Lyot filter and its application to snapshot spectral imaging," Opt. Express 18, 5602-5608 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. R. Harvey, J. E. Beale, A. H. Greenaway, T. J. Hanlon, and J. W. Williams, “Technology options for hyperspectral imaging,” Proc. SPIE 4132, 13–24 (2000). [CrossRef]
  2. L. L. Thompson, “Remote sensing using solid-state array technology,” Photogramm. Eng. 45, 47–55 (1979).
  3. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002). [CrossRef]
  4. A. R. Harvey and D. W. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004). [CrossRef] [PubMed]
  5. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” EBS Letters 546, 87–93 (2003).
  6. M. Rast and J. L. Bezy, “The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission,” Int. J. Remote Sens. 20(9), 1681–1702 (1999). [CrossRef]
  7. Y. R. Chen, K. Chao, and M. S. Kim, “Machine vision technology for agricultural applications,” Comput. Electron. Agric. 36(2-3), 173–191 (2002). [CrossRef]
  8. D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001). [CrossRef] [PubMed]
  9. J. Hunicz, and D. Piernikarski, “Investigation of combustion in a gasoline engine using spectrophotometric methods”, Optoelectronic and Electronic Sensors IV Proc. SPIE 4516, 307–314 (2001).
  10. P. Kauranen, S. Andersson-Engels, and S. Svanberg, “Spatial mapping of flame radical emission using a spectroscopic multi-colour imaging system,” Appl. Phys. B-Photo. 53(Issue 4), 260–264 (1991). [CrossRef]
  11. I. Alabboud, G. Muyo, A. Gorman, D. Mordant, A. McNaught, C. Petres, Y. R. Petillot, and A. R. Harvey, “New spectral imaging techniques for blood oximetry in the retina”, Proc. SPIE 6631, 6631–0L-1–10 (2007).
  12. K. Gono, T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging,” J. Biomed. Opt. 9(3), 568–577 (2004). [CrossRef] [PubMed]
  13. J. Karlholm and I. Renhorn, “Wavelength band selection method for multispectral target detection,” Appl. Opt. 41(32), 6786–6795 (2002). [CrossRef] [PubMed]
  14. L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, and L. E. Tacconi Garman, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996). [CrossRef]
  15. D. W. Fletcher-Holmes and A. R. Harvey, “Spectral imaging with a hyperspectral fovea,” J. Opt. A, Pure Appl. Opt. 7(6), S298–S302 (2005). [CrossRef]
  16. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22(16), 1271–1273 (1997). [CrossRef] [PubMed]
  17. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot Hyperspectral Imaging in Ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007). [CrossRef] [PubMed]
  18. B. Lyot, “Filter monochromatique polarisant et ses applications en physique solaire,” Ann. Astrophys. (Paris) 7, 32 (1944).
  19. G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. Int. 16(2), 169–205 (1968). [CrossRef]
  20. G. Muyo, I. Alabboud, A. Gorman, D. Mordant, I. McNaught, and A. R. Harvey, “Snapshot retinal oximetry”, To be submitted to Optics Express (2010).
  21. Jet Propulsion Laboratory, University of California, http://speclib.jpl.nasa.gov/

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (1929 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited