OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5629–5638

Impact of vertical stratification of inherent optical properties on radiative transfer in a plane-parallel turbid medium

Minzheng Duan, Qilong Min, and Knut Stamnes  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5629-5638 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The atmosphere is often divided into several homogeneous layers in simulations of radiative transfer in plane-parallel media. This artificial stratification introduces discontinuities in the vertical distribution of the inherent optical properties at boundaries between layers, which result in discontinuous radiances and irradiances at layer interfaces, which lead to errors in the radiative transfer simulations. To investigate the effect of the vertical discontinuity of the atmosphere on radiative transfer simulations, a simple two layer model with only aerosols and molecules and no gas absorption is used. The results show that errors larger than 10% for radiances and several percent for irradiances could be introduced if the atmosphere is not layered properly.

© 2010 OSA

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: December 14, 2009
Revised Manuscript: February 19, 2010
Manuscript Accepted: March 1, 2010
Published: March 4, 2010

Minzheng Duan, Qilong Min, and Knut Stamnes, "Impact of vertical stratification of inherent optical properties on radiative transfer in a plane-parallel turbid medium," Opt. Express 18, 5629-5638 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Stamnes, S. C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete ordinate method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27(12), 2502–2509 (1988). [CrossRef] [PubMed]
  2. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A moderate resolution model for LOWTRAN 7,” GL-TR-89–0122, Phillips Laboratory, ADA214337 (1989).
  3. K. F. Evans and G. L. Stephens, “A new polarized atmospheric radiative transfer model,” J. Quant. Spectrosc. Radiat. Transf. 46(5), 413–423 (1991). [CrossRef]
  4. E. F. Vermote, D. Tanre, J. L. Deuze, M. Herman, and J.-J. Morcette, “Second simulation of the satellite signal in the solar spectrum, 6S: an overview,” IEEE Trans. Geosci. Rem. Sens. 35(3), 675–686 (1997). [CrossRef]
  5. Q. Min and M. Duan, “A successive order of scattering model for solving vector radiative transfer in the atmosphere,” J. Quant. Spectrosc. Radiat. Transf. 87(3-4), 243–259 (2004). [CrossRef]
  6. M. Duan and Q. Min, “A polarized radiative transfer model based on successive order of scattering method,” Adv. Atmos. Sci. Doi: (in print).
  7. G. E. Thomas, and K. Stamnes, Radiative transfer in the atmosphere and ocean. (Cambridge, 1999), P160.
  8. J. Xie and X. Xia, “Long-term trend in aerosol optical depth from 1980 to 2001 in north China,” Particuology 6(2), 106–111 (2008). [CrossRef]
  9. P. M. Teillet, “Rayleigh optical depth comparisons from various sources,” Appl. Opt. 29(13), 1897–1900 (1990). [CrossRef] [PubMed]
  10. L. Harrison and J. Michalsky, “Objective algorithms for the retrieval of optical depths from ground-based measurements,” Appl. Opt. 33(22), 5126–5132 (1994). [CrossRef] [PubMed]
  11. L. Harrison, J. Michalsky, and J. Berndt, “Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements,” Appl. Opt. 33(22), 5118–5125 (1994). [CrossRef] [PubMed]
  12. Q. Min and L. Harrison, “Cloud Properties Derived From Surface MFRSR Measurements and Comparison With GOES Results at the ARM SGP Site,” Geophys. Res. Lett. 23(13), 1641 (1996). [CrossRef]
  13. Q. Min, E. Joseph, and M. Duan, “Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer,” J. Geophys. Res. 109(D2), D02201 (2004), doi:. [CrossRef]
  14. M. Alexandrov, A. Marshak, B. Cairns, A. A. Lacis, and B. E. Carlson, “Automated cloud screening algorithm for MFRSR data,” Geophys. Res. Lett. 31(4), L04118 (2004), doi:. [CrossRef]
  15. M. Alexandrov, A. Lacis, B. Carlson, and B. Cairns, “Remote sensing of atmospheric aerosols and trace gases by means of multifilter rotating shadowband radiometer. Part I: Retrieval algorithm,” J. Atmos. Sci. 59(3), 524–543 (2002). [CrossRef]
  16. H. R. Gordon and D. J. Castaño, “Coastal zone color scanner atmospheric effects and its application algorithm: multiple scattering effects,” Appl. Opt. 26(11), 2111–2122 (1987). [CrossRef] [PubMed]
  17. M. Wang and H. R. Gordon, “Retrieval of the columnar aerosol phase function and single-scatting albedo from sky radiance over the ocean: simulations,” Appl. Opt. 32(24), 4598–4609 (1993). [CrossRef] [PubMed]
  18. F. Kuik, J. F. De Haan, and J. W. Hovenier, “Benchmark results for single scattering by spheroids,” J. Quant. Spectrosc. Radiat. Transf. 47(6), 477–489 (1992). [CrossRef]
  19. M. Duan, Q. Min, and J. Li, “A fast radiative transfer model for simulating high-resolution absorption bands,” J. Geophys. Res. 110(D15), D15201 (2005), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited