OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5661–5667

Insect wing deformation measurements using high speed digital holographic interferometry

Daniel D. Aguayo, Fernando Mendoza Santoyo, Manuel H. De la Torre-I, Manuel D. Salas-Araiza, Cristian Caloca-Mendez, and David Asael Gutierrez Hernandez  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5661-5667 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An out-of-plane digital holographic interferometry system is used to detect and measure insect’s wing micro deformations. The in-vivo phenomenon of the flapping is registered using a high power cw laser and a high speed camera. A series of digital holograms with the deformation encoded are obtained. Full field deformation maps are presented for an eastern tiger swallowtail butterfly (Pterourus multicaudata). Results show no uniform or symmetrical deformations between wings. These deformations are in the order of hundreds of nanometers over the entire surface. Out-of-plane deformation maps are presented using the unwrapped phase maps.

© 2010 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2880) Instrumentation, measurement, and metrology : Holographic interferometry
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 29, 2010
Revised Manuscript: February 19, 2010
Manuscript Accepted: February 19, 2010
Published: March 4, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Daniel D. Aguayo, Fernando Mendoza Santoyo, Manuel H. De la Torre-I, Manuel D. Salas-Araiza, Cristian Caloca-Mendez, and David Asael Gutierrez Hernandez, "Insect wing deformation measurements using high speed digital holographic interferometry," Opt. Express 18, 5661-5667 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Jones, and C. Wykes, Holographic and Speckle Interferometry (Cambridge Univ. Press, 1989).
  2. K. J. Gasvik, Optical Metrology (John Wiley & Sons, Ltd., 2002).
  3. R. K. Erf, Holographic Nondestructive Testing (Academic Press Inc., 1974).
  4. C. M. Vest, Holographic Interferometry (John Wiley & Sons, 1979).
  5. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (John Wiley & Sons,Ltd., 2001).
  6. S. Schedin, G. Pedrini, and H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39(16), 2853–2857 (2000). [CrossRef]
  7. D. L. Grodnitsky, Form and Function of Insect Wings (John Hopkins University, 1999).
  8. R. Dudley, The biomedical of insect flight (Princeton University Press, 2000).
  9. S. P. Sane, “The aerodynamics of insect flight,” J. Exp. Biol. 206(23), 4191–4208 (2003). [CrossRef] [PubMed]
  10. C. P. Ellington, “The novel aerodynamics of insect flight: applications to micro-air vehicles,” J. Exp. Biol. 202(Pt 23), 3439–3448 (1999). [PubMed]
  11. T. L. Hedrick, J. R. Usherwood, and A. A. Biewener, “Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds,” J. Exp. Biol. 207(10), 1689–1702 (2004). [CrossRef] [PubMed]
  12. J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings I. Model hawkmoth wings,” J. Exp. Biol. 205(Pt 11), 1547–1564 (2002). [PubMed]
  13. S. J. Steppan, “Flexural stiffness patterns of butterfly wings (Papilionoidea),” J. Res. Lepid. 35, 61–67 (1996).
  14. S. A. Combes and T. L. Daniel, “Flexural stiffness in insect wings. I. Scaling and the influence of wing venation,” J. Exp. Biol. 206(17), 2979–2987 (2003). [CrossRef] [PubMed]
  15. J. R. Usherwood and C. P. Ellington, “The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail,” J. Exp. Biol. 205(Pt 11), 1565–1576 (2002). [PubMed]
  16. S. Sudo, K. Tsuyuki, and K. Kanno, “Wings characteristics and flapping behavior of flying Insects,” JSEM 45, 550–555 (2005).
  17. R. B. Srygley and A. L. R. Thomas, “Unconventional lift-generating mechanisms in free-flying butterflies,” Nature 420(6916), 660–664 (2002). [CrossRef] [PubMed]
  18. A. L. R. Thomas, G. K. Taylor, R. B. Srygley, R. L. Nudds, and R. J. Bomphrey, “Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack,” J. Exp. Biol. 207(24), 4299–4323 (2004). [CrossRef] [PubMed]
  19. M. Dickinson, “Solving the mystery of insect flight,” Sci. Am. 284, 34–41 (2001).
  20. J. Yan, R. J. Wood, S. Avadhanula, M. Sitti, and R. S. Fearing, “Towards flapping wing control for a micromechanical flying insect,” in Proceedings of IEEE Conference 4 (IEEE, 2001), pp. 3901- 3908.
  21. S. Avadhanula, R. J. Wood, E. Steltz, J. Yan, and R. S. Fearing, “Lift force improvements for the micromechanical flying insect,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems 2 (IEEE 2003), pp. 1350- 1356.
  22. I. D. Wallace, N. J. Lawson, A. R. Harvey, J. D. C. Jones, and A. J. Moore, “High-speed photogrammetry system for measuring the kinematics of insect wings,” Appl. Opt. 45(17), 4165–4173 (2006). [CrossRef] [PubMed]
  23. C. Pérez-López, M. H. De la Torre-Ibarra, and F. Mendoza Santoyo, “Very high speed cw digital holographic interferometry,” Opt. Express 14(21), 9709–9715 (2006). [CrossRef] [PubMed]
  24. S. Sunada, D. Song, X. Meng, H. Wang, L. Zeng, and K. Kawachi, “Optical measurement of the deformation, motion and generated force of the wings of a moth, Mythima separate (Walker),” JSME Int. J. Ser. B 45(4), 836–842 (2002). [CrossRef]
  25. I. R. Hooper, P. Vukusic, and R. J. Wootton, “Detailed optical study of the transparent wing membranes of the dragonfly Aeshna cyanea,” Opt. Express 14(11), 4891–4897 (2006). [CrossRef] [PubMed]
  26. G. Pedrini, W. Osten, and M. E. Gusev, “High-speed digital holographic interferometry for vibration measurement,” Appl. Opt. 45(15), 3456–3462 (2006). [CrossRef] [PubMed]
  27. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “Simultaneous three-dimensional dynamic deformation measurements with pulsed digital holography,” Appl. Opt. 38(34), 7056–7062 (1999). [CrossRef]
  28. M. De la Torre-Ibarra, F. Mendoza-Santoyo, C. Pérez-López, and S. A. Tonatiuh, “Detection of surface strain by three-dimensional digital holography,” Appl. Opt. 44(1), 27–31 (2005). [PubMed]
  29. A. Fernández, A. J. Moore, C. Pérez-López, A. F. Doval, and J. Blanco-García, “Study of transient deformations with pulsed TV holography: application to crack detection,” Appl. Opt. 36(10), 2058–2065 (1997). [CrossRef] [PubMed]
  30. N. K. Mohan, A. Andersson, M. Sjödahl, and N.-E. Molin, “Optical configuration for TV holography measurement of in-plane and out-of-plane deformations,” Appl. Opt. 39(4), 573–577 (2000). [CrossRef]
  31. M. Takeda, H. Ina, S. Kobayashi, H Ina, and S Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (1678 KB)     
» Media 2: AVI (1049 KB)     
» Media 3: AVI (918 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited