OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5691–5706

Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells

Shrestha Basu Mallick, Mukul Agrawal, and Peter Peumans  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5691-5706 (2010)
http://dx.doi.org/10.1364/OE.18.005691


View Full Text Article

Enhanced HTML    Acrobat PDF (1736 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Crystalline silicon is an attractive photovoltaic material because of its natural abundance, accumulated materials and process knowledge, and its appropriate band gap. To reduce cost, thin films of crystalline silicon can be used. This reduces the amount of material needed and allows material with shorter carrier diffusion lengths to be used. However, the indirect band gap of silicon requires that a light trapping approach be used to maximize optical absorption. Here, a photonic crystal (PC) based approach is used to maximize solar light harvesting in a 400 nm-thick silicon layer by tuning the coupling strength of incident radiation to quasiguided modes over a broad spectral range. The structure consists of a double layer PC with the upper layer having holes which have a smaller radius compared to the holes in the lower layer. We show that the spectrally averaged fraction of photons absorbed is increased 8-fold compared to a planar cell with equivalent volume of active material. This results in an enhancement of maximum achievable photocurrent density from 7.1 mA/cm2 for an unstructured film to 21.8 mA/cm2 for a film structured as the double layer photonic crystal. This photocurrent density value approaches the limit of 26.5 mA/cm2, obtained using the Yablonovitch light trapping limit for the same volume of active material.

© 2010 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Solar Energy

History
Original Manuscript: December 3, 2009
Revised Manuscript: January 16, 2010
Manuscript Accepted: February 22, 2010
Published: March 5, 2010

Virtual Issues
Focus Issue: Solar Concentrators (2010) Optics Express

Citation
Shrestha Basu Mallick, Mukul Agrawal, and Peter Peumans, "Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells," Opt. Express 18, 5691-5706 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5691


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Yamamoto, T. Suzuki, M. Yoshimi, and A. Nakaijima, “Optical Confinement effect for below 5 µm Thin Film Poly-Si Solar Cell on Glass Substrate,” Jpn. J. Appl. Phys. 36(Part 2, No. 5A), L569–L572 (1997). [CrossRef]
  2. R. Bergmann, T. Rinke, T. Wagner, and J. Werner, “Thin film solar cells on glass based on the transfer of monocrystalline Si films,” Sol. Energy Mater. Sol. Cells 65(1-4), 355–361 (2001). [CrossRef]
  3. H. Tayanaka, K. Yamauchi, and T. Matsushita, “Thin-film crystalline silicon solar cells obtained by separation of a porous silicon sacrificial layer,” in Proceedings of the Second World Conference on Photovoltaic Solar Energy Conversion(1998), p. 1272.
  4. R. M. Swanson, “Point-contact solar cells - Modeling and experiment,” Sol. Cells 17(1), 85–118 (1986). [CrossRef]
  5. M. A. Green, “Limits on the open-circuit voltage and efficiency of Silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev. 31(5), 671–678 (1984). [CrossRef]
  6. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting Efficiency of Silicon Solar Cells,” IEEE Trans. Electron. Dev. 31(5), 711–716 (1984). [CrossRef]
  7. L. Danos, G. Jones, R. Greef, and T. Markvart, “Ultra-thin silicon solar cell: Modelling and Characterisation,” Phys. Status Solidi 5(5), 1407–1410 (2008). [CrossRef]
  8. J. Yoon, A. J. Baca, S. I. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. H. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nat. Mater. 7(11), 907–915 (2008). [CrossRef] [PubMed]
  9. E. Yablonovitch, “Statistical Ray Optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]
  10. E. Yablonovitch and G. D. Cody, “Intensity Enhancement in Textured Optical Sheets for Solar Cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982). [CrossRef]
  11. M. Agrawal, Photonic Design for Efficient Solid-State Energy Conversion, (Stanford University, Stanford, 2008).
  12. J. Gee, “Optically enhanced absorption in thin silicon layers using photonic crystals,” in Twenty-Ninth IEEE Photovolt. Spec. Conf. (2002), pp. 150–153.
  13. S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, “Enhanced emission from Si-based light emitting diodes using surface plasmons,” Appl. Phys. Lett. 88(16), 161102 (2006). [CrossRef]
  14. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005). [CrossRef]
  15. P. N. Saeta, V. E. Ferry, D. Pacifici, J. N. Munday, and H. A. Atwater, “How much can guided modes enhance absorption in thin solar cells?” Opt. Express 17(23), 20975–20990 (2009). [CrossRef] [PubMed]
  16. R. H. Morf, and H. Kiess, “Submicron gratings for light trapping in silicon solar cells: a theoretical study,” in Proc. Ninth Internat. Conf. Photvolt. Solar Energy, W. Palz, ed., (Commission of the European Commmunities, Brussels, 1989), pp. 313–315.
  17. M. Gale, B. Curtis, H. Kiess, and R. H. Morf, “Design and fabrication of submicron grating structures for light trapping in silicon solar cells,” Proc. SPIE 1272, 60–66 (1990). [CrossRef]
  18. S. H. Zaidi, J. Gee, and D. S. Ruby, “Diffraction grating structures in solar cells,” in Twenty-Eighth IEEE Photovolt. Spec. Conf. (2000), pp. 395–398.
  19. F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87(1-4), 481–492 (2005). [CrossRef]
  20. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef] [PubMed]
  21. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys. 103(9), 093102 (2008). [CrossRef]
  22. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  23. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89(11), 111111 (2006). [CrossRef]
  24. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16(19), 15238–15248 (2008). [CrossRef] [PubMed]
  25. C. L. Huisman, J. Schoonman, and A. Goossens, “The application of inverse titania opals in nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 85, 115–124 (2005).
  26. A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005). [CrossRef]
  27. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003). [CrossRef] [PubMed]
  28. N. N. Feng, J. Michel, L. Zeng, J. Liu, C. Y. Hong, L. C. Kimerling, and X. Duan, “Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells,” IEEE Trans. Electron. Dev. 54(8), 1926–1933 (2007). [CrossRef]
  29. P. G. O'Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008). [CrossRef]
  30. P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Miguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007). [CrossRef]
  31. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009). [CrossRef] [PubMed]
  32. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings:enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995). [CrossRef]
  33. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  34. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997). [CrossRef]
  35. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25(15), 1092–1094 (2000). [CrossRef]
  36. J. H. Jiang, P. C. Deguzman, and G. P. Nordin, “Analysis of stacked rotated gratings,” Appl. Opt. 46(8), 1177–1183 (2007). [CrossRef] [PubMed]
  37. S. Peng and M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,” J. Opt. Soc. Am. A 12(5), 1087–1096 (1995). [CrossRef]
  38. D. M. Chambers and G. P. Nordin, “Stratified volume diffractive optical elements as high-efficiency gratings,” J. Opt. Soc. Am. A 16(5), 1184–1193 (1999). [CrossRef]
  39. A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovoltaics 8(5), 473–487 (2000). [CrossRef]
  40. H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8(9), 491–493 (1983). [CrossRef] [PubMed]
  41. S. G. Tikhodeev, A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66(4), 045102 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited