OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5746–5753

Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides

I. Cestier, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, and A. De Rossi  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5746-5753 (2010)
http://dx.doi.org/10.1364/OE.18.005746


View Full Text Article

Acrobat PDF (180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a large nonlinear response in a 1.3mm long GaInP photonic crystal waveguide. The wide band gap of GaInP (1.9 eV) ensures that no two photon absorption takes place for photons at 1.55mm improving the nonlinear performance. The nonlinearity is enhanced by a resonance effect due to the waveguide end facet reflectivities as well as by the low group velocity exhibited by the waveguide. A low CW input pump power of ≃2mW causes a very large change in the nonlinear refractive index coefficient which manifests itself in a large, ≃p /3 phase shift in the Fabry Perot fringes. The extracted effective nonlinear coefficient g varies from 3.4 × 105W−1m−1 at short wavelengths to 2.2 × 106W−1m−1 near the band edge. These values are several orders of magnitude larger than those obtained in reported nonlinear experiments which exploit the Kerr effect. We postulate therefore that the observed nonlinearity is due to a hybrid phenomenon which combines the Kerr effect and an index change which is induced by local heating that results from the residual linear absorption. The efficient nonlinear phase shift was also exploited in a fast dynamic experiment where we demonstrated wavelength conversion with 100ps wide pulses proving the potential for switching functionalities at multi GHz rates. The index change required for this switching experiment can not be obtained, at the power levels used here, with a g value of a few thousands W−1m−1 which is a typical Kerr coefficient in similar waveguides. Hence, we conclude that the hybrid nonlinearity is sufficiently fast to enable switching with a time scale of at least 100ps.

© 2010 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 9, 2009
Revised Manuscript: January 19, 2010
Manuscript Accepted: January 19, 2010
Published: March 8, 2010

Citation
I. Cestier, V. Eckhouse, G. Eisenstein, S. Combrié, P. Colman, and A. De Rossi, "Resonance enhanced large third order nonlinear optical response in slow light GaInP photonic-crystal waveguides," Opt. Express 18, 5746-5753 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5746


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425,944-947 (2003). [CrossRef]
  2. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19,2052-2059 (2002). [CrossRef]
  3. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17,2944-2953 (2009). [CrossRef]
  4. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, "Enhanced third-order nonlinear effects in slow-light photoniccrystal slab waveguides of line-defect," Opt. Express 17,7206-7216 (2009). [CrossRef]
  5. C. Husko, S. Combrié, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, "Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides," Opt. Express 17,22442-22451 (2009). [CrossRef]
  6. C. Husko, A. De Rossi, S. Combrié, Q. Vy Tran, F. Raineri, and C. W. Wong, "Ultrafast all-optical modulation in GaAs photonic crystal cavities," Appl. Phys. Lett. 94, 021111-1-021111-3 (2009). [CrossRef]
  7. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13,801-820 (2005). [CrossRef]
  8. S. Combrié, Q. Vy Tran, C. Husko, P. Colman, and A. De Rossi, "High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption," Appl. Phys. Lett. 95, 221108-1-211108-3 (2009).
  9. E. Inbar and A. Arie, "High-sensitivity measurements of the Kerr constant in gases using a Fabry Perot-based ellipsometer," Appl. Phys. B 70,849-852 (2000).
  10. S. Combrié, A. De Rossi, Q. N. V. Tran, and H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 ?m," Opt. Lett. 33,1908-1910 (2008). [CrossRef]
  11. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).
  12. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  13. A. E. Siegman, Lasers (University Science Books, 1986).
  14. N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, A. Sato, H. Yokoyama, K. Yamada, T. Watanabe, T. Tsuchizawa, H. Fukuda, S. Itabashi, and K. Edamatsu, "All-optical phase modulations in a silicon wire waveguide at ultralow light levels," Appl. Phys. Lett.95, 171110-1-171110-3 (2009).
  15. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, "Wavelength conversion in GaAs micro-ring resonators," Opt. Lett. 25,554-556 (2000). [CrossRef]
  16. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13,4629-4637 (2005). [CrossRef]
  17. K. Suzuki, Y. Hamachi, and T. Baba, "Fabrication and characterization of chalcogenide glass photonic crystal waveguides," Opt. Express 17,22393-22400 (2009). [CrossRef]
  18. A. M. Malvezzi, G. Vecchi, M. Patrini, G. Guizzetti, L. C. Andreani, F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, and M. De Vittorio, "Resonant second-harmonic generation in a GaAs photonic crystal waveguide," Phys. Rev. B 68, 161306-1-161306-4 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited