OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5791–5801

Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging

Yuzhu Liu, Bifeng Tang, Huan Shen, Song Zhang, and Bing Zhang  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5791-5801 (2010)
http://dx.doi.org/10.1364/OE.18.005791


View Full Text Article

Enhanced HTML    Acrobat PDF (460 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamics of excited states in o-xylene molecules has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. The ultrafast internal conversion from the S2 state to the vibrationally hot S1 state on timescale of 60 fs is observed on real time. The secondarily populated high vibronic S1 state deactivates further to the S0 state on timescale of 9.85 ps. Interestingly, the lifetime of the low vibronic S1 state is much longer, extrapolated to ~12.7 ns. The great differences of lifetime of different vibronic S1 state are due to their different radiationless dynamics.

© 2010 OSA

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: January 8, 2010
Revised Manuscript: February 11, 2010
Manuscript Accepted: February 12, 2010
Published: March 8, 2010

Citation
Yuzhu Liu, Bifeng Tang, Huan Shen, Song Zhang, and Bing Zhang, "Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging," Opt. Express 18, 5791-5801 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5791


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. V. Hertel and W. Radloff, “Ultrafast dynamics in isolated molecules and molecular clusters,” Rep. Prog. Phys. 69(6), 1897–2003 (2006). [CrossRef]
  2. A. H. Zewail, “Laser Femtochemistry,” Science 242(4886), 1645–1653 (1988). [CrossRef] [PubMed]
  3. A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond Using Ultrafast Lasers,” Angew. Chem. Int. Ed. 39(15), 2586–2631 (2000). [CrossRef]
  4. A. Stolow, “Femtosecond time-resolved photoelectron spectroscopy of polyatomic molecules,” Annu. Rev. Phys. Chem. 54(1), 89–119 (2003). [CrossRef] [PubMed]
  5. T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Annu. Rev. Phys. Chem. 57(1), 555–592 (2006). [CrossRef] [PubMed]
  6. D. H. Paik, I.-R. Lee, D.-S. Yang, J. S. Baskin, and A. H. Zewail, “Electrons in finite-sized water cavities: hydration dynamics observed in real time,” Science 306(5696), 672–675 (2004). [CrossRef] [PubMed]
  7. N. K. Schwalb and F. Temps, “Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine,” J. Am. Chem. Soc. 129(30), 9272–9273 (2007). [CrossRef] [PubMed]
  8. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104(4), 1719–1758 (2004). [CrossRef] [PubMed]
  9. W. M. Kwok, C. Ma, and D. L. Phillips, “A doorway state leads to photostability or triplet photodamage in thymine DNA,” J. Am. Chem. Soc. 130(15), 5131–5139 (2008). [CrossRef] [PubMed]
  10. C. Daniel, J. Full, L. González, C. Lupulescu, J. Manz, A. Merli, Š. Vajda, and L. Wöste, “Deciphering the reaction dynamics underlying optimal control laser fields,” Science 299(5606), 536–539 (2003). [CrossRef] [PubMed]
  11. A. M. Rijs, M. H. M. Janssen, E. T. Chrysostom, and C. C. Hayden, “Femtosecond coincidence imaging of multichannel multiphoton dynamics,” Phys. Rev. Lett. 92(12), 123002 (2004). [CrossRef] [PubMed]
  12. P. Kukura, D. W. McCamant, S. Yoon, D. B. Wandschneider, and R. A. Mathies, “Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman,” Science 310(5750), 1006–1009 (2005). [CrossRef] [PubMed]
  13. M. Lenner and C. Spielmann, “Femtosecond time-resolved saturation dynamics of BDN-doped polycarbonate,” Opt. Express 14(5), 1850–1855 (2006). [CrossRef] [PubMed]
  14. A. Stolow, V. Blanchet, M. Z. Zgierski, and T. Seideman, “Discerning vibronicmolecular dynamics using time-resolved photoelectron spectroscopy,” Nature 401(6748), 52–54 (1999). [CrossRef]
  15. M. Oku, Y. Hou, X. Xing, B. Reed, H. Xu, C. Chang, C. Y. Ng, K. Nishizawa, K. Ohshimo, and T. Suzuki, “3s Rydberg and cationic States of pyrazine studied by photoelectron spectroscopy,” J. Phys. Chem. A 112(11), 2293–2310 (2008). [CrossRef] [PubMed]
  16. W. Domcke and G. Stock, “Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time,” Adv. Chem. Phys. 100, 1–169 (1997). [CrossRef]
  17. J. H. Callomon, J. E. Parkin, and R. Lopez-Delgado, “Non-radiative relaxation of the excited à 1B2u state of benzene,” Chem. Phys. Lett. 13(2), 125–131 (1972). [CrossRef]
  18. A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. I. General aspects of benzene single vibronic level fluorescence,” J. Am. Chem. Soc. 97(8), 1993–2005 (1975). [CrossRef]
  19. A. E. W. Knight, C. S. Parmenter, and M. W. Schuyler, “An extended view of the benzene 260 nm transition via single vibronic level fluorescence. II. Single vibronic level fluorescence as a probe in the assignment of the absorption spectrum,” J. Am. Chem. Soc. 97(8), 2005–2013 (1975). [CrossRef]
  20. P. Farmanara, V. Stert, W. Radloff, and I. V. Hertel, “Ultrafast internal conversion in highly excited toluene monomers and dimmers,” J. Phys. Chem. A 105(23), 5613–5617 (2001). [CrossRef]
  21. Y. Wang, S. Zhang, Z. Wei, Q. Zheng, and B. Zhang, “Br(2Pj) atom formation dynamics in ultraviolet photodissociation of tert-butyl bromide and iso-butyl bromide,” J. Chem. Phys. 125(18), 184307 (2006). [CrossRef] [PubMed]
  22. Y. Liu, Q. Zheng, Y. Zhang, R. Zhang, Y. Wang, and B. Zhang, “Photolysis of 1-C4H9I and 2-C4H9I at 266 nm: direct observation of the effect of branching on the photodissociation mechanism,” ChemPhysChem 10(5), 830–834 (2009). [CrossRef] [PubMed]
  23. Z. Wei, F. Zhang, Y. Wang, and B. Zhang, “Predissociation Dynamics of B State of Methyl Iodide with Femtosecond Pump-probe Technique,” Chin. J. Chem. Phys. 20(4), 419–424 (2007). [CrossRef]
  24. V. Dribinski, A. Ossadtchi, V. A. Mandelshtam, and H. Reisler, “Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method,” Rev. Sci. Instrum. 73(7), 2634–2642 (2002). [CrossRef]
  25. L. Wang, H. Kohguchi, and T. Suzuki, “Femtosecond time-resolved photoelectron imaging,” Faraday Discuss. 113, 37–46 (1999). [CrossRef]
  26. W. Radloff, V. Stert, Th. Freudenberg, I. V. Hertel, C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi, “Inernal conversion in highly excited benzene and benzene dimmer: femtosecond time-resolved photoelectron spectroscpy,” Chem. Phys. Lett. 281(1-3), 20–26 (1997). [CrossRef]
  27. C. N. Yang, “On the angular distribution in nuclear reactions and coincidence measurements,” Phys. Rev. 74(7), 764–772 (1948). [CrossRef]
  28. T. Droz, S. Leutwyler, M. Mandziuk, and Z. Bačić, “Intermolecular vibrations of o-xylene·Ar in the S0 and S1 states: Experiment and quantum three dimensional calculations,” J. Chem. Phys. 101(8), 6412–6423 (1994). [CrossRef]
  29. T. A. Stephenson and S. A. Rice, “Vibrational state dependence of radiationless processes in 1B2u benzene,” J. Chem. Phys. 81(3), 1073–1082 (1984). [CrossRef]
  30. W. A. Noyes., “W. A. Mulac, D. A. Harter, “Some aspects of the photochemistry of benzene,” J. Chem. Phys. 44(5), 2100–2106 (1966). [CrossRef]
  31. P. T. Whiteside, A. K. King, and K. L. Reid, “Photoelectron spectroscopy of S1 toluene: I. Photoionization propensities of selected vibrational levels in S1 toluene,” J. Chem. Phys. 123(20), 204316 (2005). [CrossRef] [PubMed]
  32. P. T. Whiteside, A. K. King, J. A. Davies, K. L. Reid, M. Towrie, and P. Matousek, “Photoelectron spectroscopy of S1 toluene: II. Intramolecular dynamics of selected vibrational levels in S1 toluene studied by nanosecond and picosecond time-resolved photoelectron spectroscopies,” J. Chem. Phys. 123(20), 204317 (2005). [CrossRef] [PubMed]
  33. K. G. Spears and S. A. Rice, “Study of the Lifetimes of Individual Vibronic States of the Isolated Benzene Molecule,” J. Chem. Phys. 55(12), 5561–5581 (1971). [CrossRef]
  34. L. Wunsch, H. J. Neusser, and E. W. Schlag, “Two-photon absorption in the collisionless gas phase: lifetimes of new vibrational levels in benzene,” Chem. Phys. Lett. 32(2), 210–215 (1975). [CrossRef]
  35. M. Clara, Th. Hellerer, and H. J. Neusser, “Fast decay of high vibronic S1 state in gas-phase benzene,” Appl. Phys. B 71, 431–437 (2000).
  36. E. Riedle, H. J. Neusser, and E. W. Schlag, “Sub-Doppler high-resolution spectra of benzene: anomalous results in the “channel three” region,” J. Phys. Chem. 86(25), 4847–4850 (1982). [CrossRef]
  37. A. L. Sobolewski, C. Woywod, and W. Domcke, “Ab initio investigation of potential-energy surfaces involved in the photophysics of benzene and pyrazine,” J. Chem. Phys. 98(7), 5627–5641 (1993). [CrossRef]
  38. D. Bryce-Smith and H. C. Longuet-Higgins, “Photochemical transformation of the benzene ring,” Chem. Commun. 17(17), 593 (1966).
  39. C. E. Otis, J. L. Knee, and P. M. Johnson, “Nonradiative processes in the channel three region of the S1 state of ultracold benzene,” J. Phys. Chem. 87(12), 2232–2239 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited