OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5802–5808

Inversion of gradient forces for high refractive index particles in optical trapping

L. A. Ambrosio and H. E. Hernández-Figueroa  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5802-5808 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The unexpected fact that a spherical dielectric particle with refractive index higher than the surrounding medium will not always be attracted towards high intensity regions of the trapping beam is fully demonstrated here using a simple ray optics approach. This unusual situation may happen due to the inversion of gradient forces, as shown here. Therefore, conventional schemes, such the one based on the use of two counter-propagating beams to cancel the scattering forces, will fail to trap the particle. However, effective trapping still can be obtained by adopting suitable incident laser beams.

© 2010 OSA

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 30, 2009
Revised Manuscript: January 4, 2010
Manuscript Accepted: March 1, 2010
Published: March 9, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

L. A. Ambrosio and H. E. Hernández-Figueroa, "Inversion of gradient forces for high refractive index particles in optical trapping," Opt. Express 18, 5802-5808 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  3. R. W. Steubing, S. Cheng, W. H. Wright, Y. Numajiri, and M. W. Berns, “Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap,” Cytometry 12(6), 505–510 (1991). [CrossRef] [PubMed]
  4. M. W. Berns, W. H. Wright, B. J. Tromberg, G. A. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” Proc. Natl. Acad. Sci. U.S.A. 86(12), 4539–4543 (1989). [CrossRef] [PubMed]
  5. V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13(5), 1395–1405 (2005). [CrossRef] [PubMed]
  6. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992). [CrossRef] [PubMed]
  7. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996). [CrossRef] [PubMed]
  8. W. Wang, A. E. Chiou, G. J. Sonek, and M. W. Berns, “Self-aligned dual-beam optical laser trap using photo-refractive phase conjugation,” J. Opt. Soc. Am. B 14(4), 697–704 (1997). [CrossRef]
  9. A. van der Horst, P. D. J. van Oostrum, A. Moroz, A. van Blaaderen, and M. Dogterom, “High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers,” Appl. Opt. 47(17), 3196 (2008). [CrossRef] [PubMed]
  10. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29(19), 2270–2272 (2004). [CrossRef] [PubMed]
  11. L. A. Ambrosio and H. E. Hernández-Figueroa, “Trapping double negative particles in the ray optics regime using optical tweezers with focused beams,” Opt. Express 17(24), 21918–21924 (2009). [CrossRef] [PubMed]
  12. W. Poon, School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, UK (personal communication, 2009).
  13. G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical tweezers,” Mycoscience 48(1), 15 (2007). [CrossRef]
  14. D. R. Burnham, G. D. Wright, N. D. Read, and D. McGloin, “Holographic and single beam optical manipulation of hyphal growth in filamentous fungi,” J. Opt. A, Pure Appl. Opt. 9(8), S172–S179 (2007). [CrossRef]
  15. N. D. Read, Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Rutherford Building, Edinburgh EH9 3JH, UK (personal communication, 2009).
  16. C. G. Reynaga-Peña and S. Bartnicki-García, “Cytoplasmic contractions in growing fungal hyphae and their morphogenetic consequences,” Arch. Microbiol. 183(4), 292–300 (2005). [CrossRef] [PubMed]
  17. A. Virag and S. D. Harris, “The Spitzenkörper: a molecular perspective,” Mycol. Res. 110(1), 4–13 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited