OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5831–5839

Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer

Juju Hu, Haijiang Hu, and Yinghua Ji  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5831-5839 (2010)
http://dx.doi.org/10.1364/OE.18.005831


View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.

© 2010 OSA

OCIS Codes
(120.1880) Instrumentation, measurement, and metrology : Detection
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 17, 2009
Revised Manuscript: February 12, 2010
Manuscript Accepted: February 24, 2010
Published: March 9, 2010

Citation
Juju Hu, Haijiang Hu, and Yinghua Ji, "Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer," Opt. Express 18, 5831-5839 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5831


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Hou and G. Wilkening, “Investigation and compensation of the nonlinearity of heterodyne interferometers,” Precis. Eng. 14(2), 91–98 (1992). [CrossRef]
  2. C. M. Wu and C. S. Su, “Nonlinearity in measurement of length by optical interferometry,” Meas. Sci. Technol. 7(1), 62–68 (1996). [CrossRef]
  3. R. C. Quenelle, “Nonlinearity in interferometric measurement,” Hewlett Packard J. 34, 3–13 (1983).
  4. N. Bobroff, “Residual errors in laser interferometry from air turbulence and nonlinearity,” Appl. Opt. 26(13), 2676–2682 (1987). [CrossRef] [PubMed]
  5. W. Hou and X. Zhao, “The drift of the nonlinearity of heterodyne interferometers,” Precis. Eng. 16(1), 25–35 (1994). [CrossRef]
  6. J. M. De Freitas and M. A. Player, “Importance of rotational beam alignment in the generation of second harmonic errors in laser heterodyne interferometry,” Meas. Sci. Technol. 4(10), 1173–1176 (1993). [CrossRef]
  7. A. Rosenbluth and N. Bobroff, “Optical source of nonlinearity of heterodyne interferometers,” Precis. Eng. 12(1), 7–11 (1990). [CrossRef]
  8. A. Yacoot and M. J. Downs, “The use of X-ray interferometry to investigate the linearity of NPL differential plane mirror optical interferometer,” Meas. Sci. Technol. 11(8), 1126–1130 (2000). [CrossRef]
  9. V. Badami, “A frequency domain method for the measurement of nonlinearity in heterodyne interferometry,” Precis. Eng. 24(1), 41–49 (2000). [CrossRef]
  10. W. Hou, “Optical parts and the nonlinearity in heterodyne interferometers,” Precis. Eng. 30(3), 337–346 (2006). [CrossRef]
  11. W. Hou, Y. Zhang, and H. Hu, “A simple technique for eliminating the nonlinearity of a heterodyne interferometer,” Meas. Sci. Technol. 20(10), 105303 (2009). [CrossRef]
  12. C. M. Wu, J. Lawall, and R. D. Deslattes, “Heterodyne interferometer with subatomic periodic nonlinearity,” Appl. Opt. 38(19), 4089–4094 (1999). [CrossRef]
  13. O. P. Lay and S. Dubovitsky, “Polarization compensation: a passive approach to a reducing heterodyne interferometer nonlinearity,” Opt. Lett. 27(10), 797–799 (2002). [CrossRef]
  14. S. Dubovitsky, O. P. Lay, and D. J. Seidel, “Elimination of heterodyne interferometer nonlinearity by carrier phase modulation,” Opt. Lett. 27(8), 619–621 (2002). [CrossRef]
  15. C. M. Wu, “Periodic nonlinearity resulting from ghost reflections in heterodyne interometry,” Opt. Commun. 215(1-3), 17–23 (2003). [CrossRef]
  16. J. Lawall and E. Kessler, “Michelson interferometry with 10pm accuracy,” Rev. Sci. Instrum. 71(7), 2669–2676 (2000). [CrossRef]
  17. B. Efron, “Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods,” Biometrika 68(3), 589–599 (1981). [CrossRef]
  18. S. Mori, T. Akatsu, and C. Miyazaki, “Laser measurement system for precise and fast positioning,” Opt. Eng. 27, 823–829 (1988).
  19. G. E. Sommargren, “A new laser measurement system for precision metrology,” Precis. Eng. 9(4), 179–184 (1987). [CrossRef]
  20. S. Hosoe, “Laser interferometric system for displacement measurement with high precision,” Nanotechnology 2(2), 88–95 (1991). [CrossRef]
  21. N. Hagiwara, Y. Nishitani, M. Yanase, and T. Saegusa, “A phase encoding method for improving the resolution and reliability of laser interferometers,” IEEE Trans. Instrum. Meas. 38(2), 548–551 (1989). [CrossRef]
  22. S. H. Lu, C. I. Chiueh, and C. C. Lee, “Differential wavelength-scanning heterodyne interferometer for measuring large step height,” Appl. Opt. 41(28), 5866–5871 (2002). [CrossRef] [PubMed]
  23. T. L. Schmitz and H. S. Kim, “Monte Carlo evaluation of periodic error uncertainty,” Precis. Eng. 31(3), 251–259 (2007). [CrossRef]
  24. D. Chu, and A. Ray, “Nonlinearity measurement and correction of metrology data from an interferometer system,” Proc. of 4th Euspen Int. Conf., 300–301 (2004).
  25. T. L. Schmitz, D. Chu, and L. Houck, “First-order periodic error correction: validation for constant and nonconstant velocities with variable error magnitudes,” Meas. Sci. Technol. 17(12), 3195–3203 (2006). [CrossRef]
  26. T. L. Schmitz, D. Chu, and H. S. Kim, “First and second order periodic error measurement for non-constant velocity motions,” Precis. Eng. 33(4), 353–361 (2009). [CrossRef]
  27. T. L. Schmitz, L. Houck, D. Chu, and L. Kalem, “Bench-top setup for validation of real time, digital periodic error correction,” Precis. Eng. 30(3), 306–313 (2006). [CrossRef]
  28. K. N. Joo, J. D. Ellis, E. S. Buice, J. W. Spronck, and R. H. M. Schmidt, “High resolution heterodyne interferometer without detectable periodic nonlinearity,” Opt. Express 18(2), 1159–1165 (2010). [CrossRef] [PubMed]
  29. J. Flügge, Ch. Weichert, H. Hu, R. Köning, H. Bosse, A. Wiegmann, M. Schulz, C. Elster, and R. D. Geckeler, “Interferometry at the PTB Nanometer Comparator: design, status and development,” Proc. SPIE 7133, 713346 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited