OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5854–5860

Polarization dependence and independence of near-field enhancement through a subwavelength circle hole

Zu-Bin Li, Wen-Yuan Zhou, Xiang-Tian Kong, and Jian-Guo Tian  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5854-5860 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (623 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By setting a metal rod or tooth-type structures in a single subwavelength hole, its near-field can be strongly enhanced. The near-field enhancement has strong polarization dependence when the structure in hole is twofold symmetric. Only the polarization along the longitudinal side of the metal rod or tooth-type structure can lead to strongest enhancement, which is attributed to the resonance of the localized surface plasmon. However, if the structure in hole is fourfold symmetric, the near-field enhancement is free from the polarization.

© 2010 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization

ToC Category:
Diffraction and Gratings

Original Manuscript: December 21, 2009
Revised Manuscript: January 26, 2010
Manuscript Accepted: January 27, 2010
Published: March 9, 2010

Zu-Bin Li, Wen-Yuan Zhou, Xiang-Tian Kong, and Jian-Guo Tian, "Polarization dependence and independence of near-field enhancement through a subwavelength circle hole," Opt. Express 18, 5854-5860 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  3. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe Limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999). [CrossRef]
  4. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  6. E. X. Jin and X. Xu, “Finitte-Difference Time-Domain studies on optical transmission through planar nano-apertures in a metal film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004). [CrossRef]
  7. K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95(7), 3765–3771 (2004). [CrossRef]
  8. K. Tanaka and M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233(4-6), 231–244 (2004). [CrossRef]
  9. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005). [CrossRef]
  10. K. Tanaka, M. Tanaka, and T. Sugiyama, “Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics,” Appl. Phys. Lett. 87(15), 151116 (2005). [CrossRef]
  11. E. X. Jin and X. Xu, “Enhanced optical near field from a bowtie aperture,” Appl. Phys. Lett. 88(15), 153110 (2006). [CrossRef]
  12. E. X. Jin and X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006). [CrossRef]
  13. L. Wang and X. Xu, “Spectral resonance of nanoscale bowtie apertures in visible wavelength,” Appl. Phys., A Mater. Sci. Process. 89(2), 293–297 (2007). [CrossRef]
  14. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7756 . [CrossRef] [PubMed]
  15. K. Tanaka, M. Tanaka, and K. Katayama, “Simulation of near-field scanning optical microscopy using a plasmonic gap probe,” Opt. Express 14(22), 10603–10613 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10603 . [CrossRef] [PubMed]
  16. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007). [CrossRef]
  17. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2584 . [CrossRef] [PubMed]
  18. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006). [CrossRef] [PubMed]
  19. N. Murphy-DuBay, L. Wang, and X. Xu, “Nanolithography using high transmission nanoscale ridge aperture probe,” Appl. Phys. A 93(4), 881–884 (2008). [CrossRef]
  20. Z. Rao, L. Hesselink, and J. S. Harris, “High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics,” Opt. Lett. 32(14), 1995–1997 (2007). [CrossRef] [PubMed]
  21. Z. Rao, L. Hesselink, and J. S. Harris, “High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 15(16), 10427–10438 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-16-10427 . [CrossRef] [PubMed]
  22. F. J. García de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10(25), 1475–1484 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-25-1475 . [PubMed]
  23. K. Tanaka, H. Hosaka, K. Itao, M. Oumi, T. Niwa, T. Miyatani, Y. Mitsuoka, K. Nakajima, and T. Ohkubo, “Improvements in near-field optical performance using localized surface plasmon excitation by a scatterer-formed aperture,” Appl. Phys. Lett. 83(6), 1083–1085 (2003). [CrossRef]
  24. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  25. D. W. Lynch, and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  26. J. L. Young and R. O. Nelson, “A Summary and Systematic Analysis of FDTD Algorithms for Linearly Dispersive Media,” IEEE Antennas Propag. Mag. 43(4), 61–126 (2001). [CrossRef]
  27. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005). [CrossRef]
  28. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999). [CrossRef]
  29. A. Brioude, X. C. Jiang, and M. P. Pileni, “Optical properties of gold nanorods: DDA simulations supported by experiments,” J. Phys. Chem. B 109(27), 13138–13142 (2005). [CrossRef]
  30. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006). [CrossRef]
  31. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited