OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5861–5872

Microlens performance limits in sub-2μm pixel CMOS image sensors

Yijie Huo, Christian C. Fesenmaier, and Peter B. Catrysse  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5861-5872 (2010)
http://dx.doi.org/10.1364/OE.18.005861


View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

CMOS image sensors with smaller pixels are expected to enable digital imaging systems with better resolution. When pixel size scales below 2 μm, however, diffraction affects the optical performance of the pixel and its microlens, in particular. We present a first-principles electromagnetic analysis of microlens behavior during the lateral scaling of CMOS image sensor pixels. We establish for a three-metal-layer pixel that diffraction prevents the microlens from acting as a focusing element when pixels become smaller than 1.4 μm. This severely degrades performance for on and off-axis pixels in red, green and blue color channels. We predict that one-metal-layer or backside-illuminated pixels are required to extend the functionality of microlenses beyond the 1.4 μm pixel node.

© 2010 OSA

OCIS Codes
(040.1490) Detectors : Cameras
(050.1940) Diffraction and gratings : Diffraction
(080.3630) Geometric optics : Lenses
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Imaging Systems

History
Original Manuscript: January 25, 2010
Revised Manuscript: March 1, 2010
Manuscript Accepted: March 2, 2010
Published: March 9, 2010

Citation
Yijie Huo, Christian C. Fesenmaier, and Peter B. Catrysse, "Microlens performance limits in sub-2μm pixel CMOS image sensors," Opt. Express 18, 5861-5872 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5861


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. B. Catrysse and B. A. Wandell, “Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld,” Proc. SPIE 5678, 1–13 (2005). [CrossRef]
  2. H. Rhodes, G. Agranov, C. Hong, U. Boettiger, R. Mauritzson, J. Ladd, I. Karasev, J. McKee, E. Jenkins, and W. Quinlin, “CMOS imager technology shrinks and image performance,” 2004 IEEE Workshop on Microelectronics and Electron. Devices, 7–18 (2004).
  3. K. B. Cho, C. Lee, S. Eikedal, A. Baum, J. Jiang, C. Xu, X. Fan, and R. Kauffman, “A 1/2.5 inch 8.1 Mpixel CMOS image sensor for digital cameras,” 2007 IEEE Intl. Solid-State Circuits Conf., 508–618 (2007).
  4. C. R. Moon, J. C. Shin, J. Kim, Y. K. Lee, Y. J. Cho, Y. Y. Yu, S. H. Hwang, B. J. Park, H. Y. Kim, S. H. Lee, J. Jung, S. H. Cho, K. Lee, K. Koh, D. Lee, and K. Kim, “Dedicated process architecture and the characteristics of 1.4 μm pixel CMOS image sensor with 8M density,” 2007 IEEE Symp. on VLSI Tech., 62–63 (2007).
  5. P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19(8), 1610–1620 (2002). [CrossRef]
  6. G. Agranov, V. Berezin, and R. H. Tsai, “Crosstalk and microlens study in a color CMOS image sensor,” IEEE Trans. Electron. Dev. 50(1), 4–11 (2003). [CrossRef]
  7. J. Ahn, C. R. Moon, B. Kim, K. Lee, Y. Kim, M. Lim, W. Lee, H. Park, K. Moon, J. Yoo, Y. J. Lee, B. J. Park, S. Jung, J. Lee, T. H. Lee, Y. K. Lee, J. Jung, J. H. Kim, T. C. Kim, H. Cho, D. Lee, and Y. Lee, “Advanced image sensor technology for pixel scaling down toward 1.0μm,” 2008 IEEE Intl. Electron Dev. Meeting, 1–4 (2008).
  8. W. G. Lee, J. S. Kim, H. J. Kim, S. Y. Kim, S. B. Hwang, and J. G. Lee, “Two-dimensional optical simulation on a visible ray passing through inter-metal dielectric layers of CMOS image sensor device,” J. Korean Phys. Soc. 47, S434–S439 (2005).
  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
  10. D. M. Hartmann, O. Kibar, and S. C. Esener, “Characterization of a polymer microlens fabricated by use of the hydrophobic effect,” Opt. Lett. 25(13), 975–977 (2000). [CrossRef]
  11. K. Shinmou, K. Nakama, and T. Koyama, “Fabrication of micro-optic elements by the sol-gel method,” J. Sol-Gel Sci. Technol. 19(1/3), 267–269 (2000). [CrossRef]
  12. C. P. Lin, H. Yang, and C. K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003). [CrossRef]
  13. X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO–TiO sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005). [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech House, Boston, 2000).
  15. OptiFDTD, Optiwave Systems, Inc., http://www.optiwave.com
  16. J. P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  17. P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18-μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20(12), 2293–2306 (2003). [CrossRef]
  18. Y. Li, “Dependence of the focal shift on Fresnel number and f number,” J. Opt. Soc. Am. 72(6), 770 (1982). [CrossRef]
  19. C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Effects of imaging lens f-number on sub-2 μm CMOS image sensor pixel performance,” Proc. SPIE 7250, 72500G (2009). [CrossRef]
  20. S. Iwabuchi, Y. Maruyama, Y. Ohgishi, M. Muramatsu, N. Karasawa, and T. Hirayama, “A Back-illuminated high-sensitivity small-pixel color CMOS image sensor with flexible layout of metal wiring,” 2006 IEEE Intl. Solid-State Circuits Conf., 1171–1178 (2006).
  21. T. Joy, S. Pyo, S. Park, C. Choi, C. Palsule, H. Han, C. Feng, S. Lee, J. McKee, P. Altice, C. Hong, C. Boemler, J. Hynecek, M. Louie, J. Lee, D. Kim, H. Haddad, and B. Pain, “Development of a production-ready, back-illuminated CMOS image sensor with small pixels,” 2007 IEEE Intl. Electron Dev. Meeting, 1007–1010 (2007).
  22. C. C. Fesenmaier, Y. Huo, and P. B. Catrysse, “Optical confinement methods for continued scaling of CMOS image sensor pixels,” Opt. Express 16(25), 20457–20470 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited