OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5879–5889

Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array

Xiaofeng Duan, Yongqing Huang, Xiaomin Ren, Hui Huang, Sanxian Xie, Qi Wang, and Shiwei Cai  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5879-5889 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An integrated reconfigurable four-channel wavelength-division-multiplexed drop module for use in the long-wavelength was demonstrated using a tunable wavelength-selective photodetector array. The array consists of an InP-based p-i-n absorption structure and a GaAs-based multistep Fabry-Pérot filtering cavity. The high quality GaAs/InP heteroepitaxy was realized by employing a thin low temperature buffer layer. The GaAs-based multistep cavity was fabricated by wet etching and regrowth. The dropped central wavelengths were 1538, 1550, 1559, and 1570nm. The tunable range reached 10nm with a tuning power efficiency of 14.2nm/W. A spectral linewidth less than 0.5nm (FWHM), a 3dB bandwidth of 9.2GHz, and the peak quantum efficiencies from 13% to 20% were simultaneously obtained, in agreement with the theoretical simulation.

© 2010 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications
(230.3120) Optical devices : Integrated optics devices
(230.5160) Optical devices : Photodetectors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 19, 2010
Revised Manuscript: February 24, 2010
Manuscript Accepted: February 24, 2010
Published: March 9, 2010

Xiaofeng Duan, Yongqing Huang, Xiaomin Ren, Hui Huang, Sanxian Xie, Qi Wang, and Shiwei Cai, "Reconfigurable multi-channel WDM drop module using a tunable wavelength-selective photodetector array," Opt. Express 18, 5879-5889 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, and R. M. Potemski, “Tapered Fabry-Pérot waveguide optical demultiplexer,” IEEE Photon. Technol. Lett. 5(9), 1082–1085 (1993). [CrossRef]
  2. B. Pezeshki, F. F. Tong, J. A. Kash, and D. W. Kisker, “Vertical cavity devices as wavelength selective waveguides,” J. Lightwave Technol. 12(10), 1791–1801 (1994). [CrossRef]
  3. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14421 . [CrossRef] [PubMed]
  4. E. J. Klein, D. H. Geuzebroek, H. Kelderman, N. Gabriel Sengo, Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17(11), 2358–2360 (2005). [CrossRef]
  5. J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, P. Guangxi Wang, Sullivan, J. Yi Liao, L. Davies, A. Dalton, Scherer, and W. Krug, “A Hybrid Electrooptic Microring Resonator-Based $1 \times 4\times 1$ ROADM for Wafer Scale Optical Interconnects,” J. Lightwave Technol. 27(4), 440–448 (2009). [CrossRef]
  6. K. T. Shiu, S. S. Agashe, and S. R. Forrest, “An InP-based monolithically integrated reconfigurable optical add-drop multiplexer,” IEEE Photon. Technol. Lett. 19(19), 1445–1447 (2007). [CrossRef]
  7. C. G. M. Vreeburg, T. Uitterdijk, Y. S. Oei, M. K. Smit, F. H. Groen, E. G. Metaal, P. Demeester, and H. J. Frankena, “First InP-based reconfigurable integrated add-drop multiplexer,” IEEE Photon. Technol. Lett. 9(2), 188–190 (1997). [CrossRef]
  8. H. Huang, X. Ren, J. Lv, Q. Wang, H. Song, S. Cai, Y. Huang, and B. Qu, “Crack-free GaAs epitaxy on Si by using midpatterned growth: Application to Si-based wavelength-selective photodetector,” J. Appl. Phys. 104(11), 113114 (2008). [CrossRef]
  9. J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, and S. Cai, “Monolithically integrated long-wavelength tunable photodetector,” J. Lightwave Technol. 26(3), 338–342 (2008). [CrossRef]
  10. X. Duan, Y. Huang, H. Huang, X. Ren, Q. Wang, Y. Shang, X. Ye, and S. Cai, “Monolithically integrated photodetector array with a multistep cavity for multiwavelength receiving applications,” J. Lightwave Technol. 27(21), 4697–4702 (2009). [CrossRef]
  11. I. Christiaens, G. Roelkens, K. D. Mesel, D. V. Thourhout, and R. Baets, “Thin-Film Devices Fabricated With Benzocyclobutene Adhesive Wafer Bonding,” J. Lightwave Technol. 23(2), 517–523 (2005). [CrossRef]
  12. V. Passaro, F. Magno, and A. Tsarev, “Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides,” Opt. Express 13(9), 3429–3437 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3429 . [CrossRef] [PubMed]
  13. T. Chu, H. Yamada, A. Gomyo, A. Ushida, S. Ishida, and Y. Arakawa, “Integrated Reconfigurable Optical Add-Drop Multiplexer (R-OADM) based on Silicon Nano-Photonic Waveguides,” in Proceedings of the 3rd IEEE International Conference on Group IV Photonics, 261–263 (2006).
  14. H. Halbritter, F. Riemenschneider, S. Syguda, C. Dhanavantri, M. Strassner, A. Tarraf, B. R. Singh, I. Sagnes, and P. Meissner, “Tunable and wavelength selective pin photodiode,” Electron. Lett. 40(6), 388–390 (2004). [CrossRef]
  15. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” Appl. Phys. (Berl.) 78, 607–639 (1995). [CrossRef]
  16. I. Kimukin, N. Biyikli, and E. Ozbay, “High-performance 1.55 micron resonant cavity enhanced photodetector,” in Optical Fiber Communications Conference, A. Sawchuk, ed., Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), paper TuW6, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2002-TuW6 .
  17. A. Beling and J. C. Campbell, “InP-Based High-Speed Photodetectors,” J. Lightwave Technol. 27(3), 343–355 (2009). [CrossRef]
  18. L. Domash, M. Wu, N. Nemchuk, and E. Ma, “Tunable and switchable Multiple-Cavity Thin Film Filters,” J. Lightwave Technol. 22(1), 126–135 (2004). [CrossRef]
  19. H. Huang, X. Ren, X. Wang, H. Cui, W. Wang, A. Miao, Y. Li, Q. Wang, and Y. Huang, “Theory and experiments of a tunable wavelength-selective photodetector based on a taper cavity,” Appl. Opt. 45(33), 8448–8453 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-33-8448 . [CrossRef] [PubMed]
  20. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-μm InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998). [CrossRef]
  21. M. V. Kotlyar, L. O’Faolain, A. B. Krysa, and T. F. Krauss, “Electrically tunable multiquantum-well InGaAsP-InGaAsP microphotonic filter,” IEEE Photon. Technol. Lett. 17(4), 837–839 (2005). [CrossRef]
  22. K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech. 47(7), 1265–1281 (1999). [CrossRef]
  23. W. A. Wohlmuth, J. W. Seo, P. Fay, C. Caneau, and I. Adesida, “A high speed ITO-InAlAs-InGaAs Schottky-barrier photodetector,” IEEE Photon. Technol. Lett. 9(10), 1388–1390 (1997). [CrossRef]
  24. J. H. Jang, G. Cueva, D. C. Dumka, W. E. Hoke, P. J. Lemonias, and I. Adesida, “Long-wavelength In0.53Ga0.47As metamorphic p-i-n photodiodes on GaAs substrates,” IEEE Photon. Technol. Lett. 13(2), 151–153 (2001). [CrossRef]
  25. H. Pan, Z. Li, A. Beling, and J. C. Campbell, “Measurement and modeling of high-linearity modified uni-traveling carrier photodiode with highly-doped absorber,” Opt. Express 17(22), 20221–20226 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20221 . [CrossRef] [PubMed]
  26. A. Wakatsuki, T. Furuta, Y. Muramoto, and T. Ishibashi, “High-Speed Photodiode and Optical Receiver Technologies,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMK1, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OMK1 .
  27. J. Kim, S. Kanakaraju, W. B. Johnson, and C. H. Lee, “Uni-Traveling Carrier Phototransistor,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CMQQ1, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-CMQQ1 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited