OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5896–5905

Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells

Yuen Yung Hui, Bailin Zhang, Yuan-Chang Chang, Cheng-Chun Chang, Huan-Cheng Chang, Jui-Hung Hsu, Karen Chang, and Fu-Hsiung Chang  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5896-5905 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dynamics of fluorescent diamond nanoparticles in HeLa cells has been studied with two-photon fluorescence correlation spectroscopy (FCS). Fluorescent nanodiamond (FND) is an excellent fluorescent probe for bioimaging application, but they are often trapped in endosomes after cellular uptake. The entrapment prohibits FCS from being performed in a time frame of 60 s. Herein, we show that the encapsulation of FNDs within a lipid layer enhances the diffusion of the particles in the cytoplasm by more than one order of magnitude, and particles as small as 40 nm can be probed individually with high image contrast by two-photon excited luminescence. The development of the technique together with single particle tracking through one-photon excitation allows probing of both short-term and long-term dynamics of single FNDs in living cells.

© 2010 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: November 19, 2009
Revised Manuscript: January 6, 2010
Manuscript Accepted: January 7, 2010
Published: March 10, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Yuen Yung Hui, Bailin Zhang, Yuan-Chang Chang, Cheng-Chun Chang, Huan-Cheng Chang, Jui-Hung Hsu, Karen Chang, and Fu-Hsiung Chang, "Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells," Opt. Express 18, 5896-5905 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. M. Berland, P. T. C. So, and E. Gratton, "Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment," Biophys. J. 68, 694-701 (1995). [CrossRef] [PubMed]
  2. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999). [CrossRef] [PubMed]
  3. V. Levi and E. Gratton, "Exploring dynamics in living cells by tracking single particles," Cell Biochem. Biophys. 48, 1-15 (2007). [CrossRef] [PubMed]
  4. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003). [CrossRef]
  5. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, "In vitro and in vivo two photon luminescence imaging of single gold nanorods," Proc. Natl. Acad. Sci. USA 102, 15752-15756 (2005). [CrossRef] [PubMed]
  6. W. H. Pohl, H. Hellmuth, M. Hilbert, J. Seibel, and P. J. Walla, "A two-photon fluorescence-correlation study of lectins interacting with carbohydrated 20 nm beads," ChemBioChem 7, 268-274 (2006). [CrossRef] [PubMed]
  7. C.-S. Chen, J. Yao, and R. A. Durst, "Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles," J. Nanoparticle Res. 8, 1033-1038 (2006). [CrossRef]
  8. R. F. Heuff, J. L. Swift, and D. T. Cramb, "Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities," Phys. Chem. Chem. Phys. 9, 1870-1880 (2007). [CrossRef] [PubMed]
  9. P. Didier, G. Ulrich, Y. Mély, and R. Ziessel, "Improved push-pull-push E-Bodipy fluorophores for two photon cell-imaging," Org. Biomol. Chem. 7, 3639-3642 (2009). [CrossRef] [PubMed]
  10. Z. Petrasek, C. Hoege, A. Mashaghi, T. Ohrt, A. A. Hyman, and P. Schwille, "Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy," Biophys. J. 95, 5476-5486 (2008). [CrossRef] [PubMed]
  11. R. Briandet, P. Lacroix-Gueu, M. Renault, S. Lecart, T. Meylheuc, E. Bidnenko, K. Steenkeste, M.-N. Bellon-Fontaine, and M.-P. Fontaine-Aupar, "Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms," Appl. Environ. Microbiol. 74, 2135-2143 (2008). [CrossRef] [PubMed]
  12. Q. Ruan, Y. Chen, E. Gratton, M. Glaser, and W. W. Mantulin, "Cellular characterization of adenylate kinase and its isoform: Two-photon excitation fluorescence imaging and fluorescence correlation spectroscopy," Biophys. J. 83, 3177-3187 (2002). [CrossRef] [PubMed]
  13. S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen, and Y.-C. Yu, "Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity," J. Am. Chem. Soc. 127, 17604-17605 (2005). [CrossRef] [PubMed]
  14. C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann, "Characterization and application of single fluorescent nanodiamonds as cellular biomarkers," Proc. Natl. Acad. Sci. USA 104, 727-732 (2007). [CrossRef] [PubMed]
  15. F. Neugart, A. Zappe, F. Jelezko, C. Tietz, J.-P. Boudou, A. Krueger, and J. Wrachtrup, "Dynamics of diamond nanoparticles in solution and cells," Nano Lett. 7, 3588-3591 (2007). [CrossRef] [PubMed]
  16. Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang, and W. Fann, "Mass production and dynamic imaging of fluorescent nanodiamonds," Nat. Nanotech. 3, 284-288 (2008). [CrossRef]
  17. O. Faklaris, D. Garrot, V. Joshi, F. Druon, J.-P. Boudou, T. Sauvage, P. Georges, P. A. Curmi, and F. Treussart, "Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway," Small 4, 2236-2239 (2008). [CrossRef] [PubMed]
  18. T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han, and H.-C. Chang, "Preparation and characterization of green fluorescent nanodiamonds for biological applications," Diamond Relat. Mater. 18, 567 (2009). [CrossRef]
  19. O. Faklaris, D. Garrot, V. Joshi, J.-P. Boudou, T. Sauvage, P. A. Curmi, and F. Treussart, "Comparison of the photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in living cells," J. Eur. Opt. Soc. Rapid Public. 4, 09032 (2009).
  20. V. Vaijayanthimala, Y.-K. Tzeng, H.-C. Chang, and C.-L. Li, "The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake," Nanotech. 20, 425103 (2009). [CrossRef]
  21. T.-L. Wee, Y.-K. Tzeng, C.-C. Han, H. C. Chang, W. Fann, J. H. Hsu, K.-M. Chen, and Y.-C. Yu, "Two photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond," J. Phys. Chem. A 111, 9379-9386 (2007). [CrossRef] [PubMed]
  22. Y. Y. Hui, Y.-R. Chang, T.-S. Lim, H.-Y. Lee, W. Fann, and H.-C. Chang, "Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation," Appl. Phys. Lett. 94, 013104 (2009). [CrossRef]
  23. B. R. Smith, M. Niebert, T. Plakhotnik, and A. V. Zvyagin, "Transfection and imaging of diamond nanocrystals as scattering optical labels," J. Lumin. 127260-263 (2007). [CrossRef]
  24. L.-C. L. Huang and H.-C. Chang, "Adsorption and immobilization of cytochrome c on nanodiamonds," Langmuir 20, 5879-5884 (2004). [CrossRef]
  25. N. Mohan, Y.-K. Tzeng, L. Yang, Y.-Y. Chen, Y. Y. Hui, C.-Y. Fang, and H.-C. Chang, "Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors," Adv. Mater. 21,1-5 (2009). DOI: 10.1002/adma.200901596.
  26. A. Krueger, Y. J. Liang, G. Jarre, and J. Stegk, "Surface functionalisation of detonation diamonds suitable for biological applications," J. Mater. Chem. 16, 2322-2328 (2006). [CrossRef]
  27. C.-F. Chang, C.-Y. Chen, F.-H. Chang, S.-P. Tai, C.-Y. Chen, C.-H. Yu, Y.-B. Tseng, T.-H. Tsai, I.-S. Liu, W.-F. Su, and C.-K. Sun, "Cell tracking and detection of molecular expression in live cells using lipid enclosed CdSe quantum dots as contrast agents for epi-third harmonic generation microscopy," Opt. Express 16, 9534-9548 (2008). [CrossRef] [PubMed]
  28. Y. Dumeige, F. Treussart, R. Alleaume, T. Gacoin, J. Roch, and P. Grangier, "Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination," J. Lumin. 109, 61-67 (2004). [CrossRef]
  29. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, "In vivo imaging of quantum dots encapsulated in phospholipid micelles," Science 298, 1759-1762 (2002). [CrossRef]
  30. Y. Chen and Z. Rosenzweig, "Luminescent CdSe quantum dot doped stabilized micelles," Nano Lett. 2, 1299-1302 (2002). [CrossRef]
  31. H. Fan, E. W. Leve, C. Scullin, J. Gabaldon, D. Tallant, T. Bunge, M. C. Wilson, and C. J. Brinker, "Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles," Nano Lett. 5, 645-648 (2005). [CrossRef] [PubMed]
  32. R. Bakalova, Z. Zhelev, I. Aoki, H. Ohba, Y. Imai, and I. Kanno, "Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality," Anal. Chem. 78, 5925-5932 (2006). [CrossRef] [PubMed]
  33. J. E. Schroeder, I. Shweky, H. Shmeeda, U. Banin, and A. Gabizon, "Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles," J. Control. Release 124, 28-34 (2007). [CrossRef] [PubMed]
  34. N. Depalo, A. Mallardi, R. Comparelli, M. Striccoli, A. Agostiano, and M. L. Curri, "Luminescent nanocrystals in phospholipid micelles for bioconjugation: An optical and structural investigation," J. Colloid Interface Sci. 325, 558-566 (2008). [CrossRef]
  35. M. J. Murcia, D. E. Minner, G. -M. Mustata, K. Ritchie, and C. A. Naumann, "Design of quantum dot conjugated lipids for long-term, high-speed tracking experiments on cell surfaces," J. Am. Chem. Soc. 130, 15054-15062 (2008). [CrossRef] [PubMed]
  36. A. Prakash, H. Zhu, C. J. Jones, D. N. Benoit, A. Z. Ellsworth, E. L. Bryant, and V. L. Colvin, "Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents," ACS Nano 3, 2139-2146 (2009). [CrossRef] [PubMed]
  37. V. P. Torchilin, "Recent advances with liposomes as pharmaceutical carriers," Nat. Rev. Drug Discov. 4, 145-160 (2005). [CrossRef] [PubMed]
  38. P. Pallavicini, Y. A. Diaz-Fernandez, and L. Pasotti, "Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors," Coord. Chem. Rev. 253, 2226-2240 (2009). [CrossRef]
  39. A. M. Derfus, W. C. Chan, and S. N. Bhatia, "Probing the cytotoxicity of semiconductor quantum dots," Nano Lett. 4, 11-18 (2003). [CrossRef]
  40. X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004). [CrossRef] [PubMed]
  41. A. M. Derfus, W. C. Chan, and S. N. Bhatia, "Intracellular delivery of quantum dots for live cell labeling and organelle tracking," Adv. Mater. 16, 961-966 (2004). [CrossRef]
  42. V. Dudu, M. Ramcharan, M. L. Gilchrist, E. C. Holland, and M. Vazquez, "Liposome delivery of quantum dots to the cytosol of live cells," J. Nanosci. Nanotechnol. 8, 2293-2300 (2008). [CrossRef] [PubMed]
  43. L. W. Zhang and N. A. Monteiro-Riviere, "Mechanisms of quantum dot nanoparticle cellular uptake," Toxicol. Sci. 110,138-155 (2009). [CrossRef] [PubMed]
  44. G. Gopalakrishnan, C. Danelon, P. Izewska, M. Prummer, P.-Y. Bolinger, I. Geissbühler, D. Demurtas, J. Dubochet, and H. Vogel, "Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells," Angew Chem. Int. Ed. 45, 5478-5483 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited