OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5906–5911

Method for characterizing single photon detectors in saturation regime by cw laser

Jungmi Oh, Cristian Antonelli, Moshe Tur, and Misha Brodsky  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5906-5911 (2010)
http://dx.doi.org/10.1364/OE.18.005906


View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive an analytical expression for the count probability of a single photon detector for a wide range of input optical power that includes afterpulsing effects. We confirm the validity of the expression by fitting it to the data obtained from a saturated commercial Single Photon Detector by illuminating it with a cw laser. Detector efficiency and afterpulsing probability extracted from the fits agree with the manufacture specs for low repetition frequencies.

© 2010 OSA

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(270.5290) Quantum optics : Photon statistics
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Detectors

History
Original Manuscript: November 20, 2009
Revised Manuscript: January 12, 2010
Manuscript Accepted: January 25, 2010
Published: March 10, 2010

Citation
Jungmi Oh, Cristian Antonelli, Moshe Tur, and Misha Brodsky, "Method for characterizing single photon detectors in saturation regime by cw laser," Opt. Express 18, 5906-5911 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. F. Levine, D. G. Bethea, and J. C. Campbell, “Near room temperature 1.3 um single photon counting with a InGaAs avalanche photodiode,” Electron. Lett. 20(14), 596–598 (1984). [CrossRef]
  2. D. Stucki, G. Ribordy, A. Stefanov, H. Zbinden, J. G. Rarity, and T. Wall, “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APD’s,” J. Mod. Opt. 48(13), 1967–1981 (2001). [CrossRef]
  3. M. Wegmuller, F. Scholder, and N. Gisin, “Photon counting OTDR for Local Birefringence and Fault Analysis in the Metro Environment,” J. Lightwave Technol. 22(2), 390–400 (2004). [CrossRef]
  4. D. S. Bethune, W. P. Risk, and G. W. Pabst, “A high performance integrated single photon detector for telecom wavelengths,” J. Mod. Opt. 51, 1359–1368 (2004).
  5. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single photon detector,” Electron. Lett. 38(23), 1468–1469 (2002). [CrossRef]
  6. PGA-600, www.princetonlightwave.com .
  7. M. A. Itzler, R. Ben-Michael, C. F. Hsu, K. Slomkowski, A. Tosi, S. Cova, F. Zappa, and R. Ispasoiu, “Single photon avalanche diodes (SPADs) for 1.5 um photon counting applications,” J. Mod. Opt. 54(2), 283–304 (2007). [CrossRef]
  8. X. Jiang, M. A. Itzler, R. Ben-Michael, and K. Slomkowski, “InGaAsP-InP avalanche photodiodes for single photon detection,” IEEE J. Sel. Top. Quantum Electron. 13(4), 895–905 (2007). [CrossRef]
  9. Y. Kang, H. X. Lu, Y.-H. Lo, D. S. Bethune, and W. P. Risk, “Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection,” Appl. Phys. Lett. 83(14), 2955 (2003). [CrossRef]
  10. J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs/InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009). [CrossRef]
  11. S. V. Polyakov and A. L. Migdall, “High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency,” Opt. Express 15(4), 1390–1407 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1390 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited