OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5912–5919

Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite

K. Gauthron, J-S. Lauret, L. Doyennette, G. Lanty, A. Al Choueiry, S.J. Zhang, A. Brehier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5912-5919 (2010)
http://dx.doi.org/10.1364/OE.18.005912


View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on optical spectroscopy (photoluminescence and photoluminescence excitation) on two-dimensional self-organized layers of (C6H5C2H4-NH3)2-PbI4 perovskite. Temperature and excitation power dependance of the optical spectra gives a new insight into the excitonic and the phononic properties of this hybrid organic/inorganic semiconductor. In particular, exciton-phonon interaction is found to be more than one order of magnitude higher than in GaAs QWs. As a result, photoluminescence emission lines have to be interpreted in the framework of a polaron model.

© 2010 OSA

OCIS Codes
(000.2700) General : General science

ToC Category:
Materials

History
Original Manuscript: November 24, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 16, 2010
Published: March 10, 2010

Citation
K. Gauthron, J-S. Lauret, L. Doyennette, G. Lanty, A. Al Choueiry, S. J. Zhang, A. Brehier, L. Largeau, O. Mauguin, J. Bloch, and E. Deleporte, "Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite," Opt. Express 18, 5912-5919 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. B. Mitzi, K. Chondroulis, and C. R. Kagan, “Organic-inorganic electronics,” IBM J. Res. Develop. 45, 29–45 (2001). [CrossRef]
  2. G. C. Papavassiliou and I. B. Koutselas, “Structural, optical and related properties of some natural three and lower dimensional semiconductors systems,” Synth. Met. 71(1-3), 1713–1714 (1995). [CrossRef]
  3. R. Parashkov, A. Brehier, A. Georgiev, S. Bouchoule, X. Lafosse, J. S. Lauret, C. T. Nguyen, M. Leroux, and E. Deleporte, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” in Progress in Advanced Materials Research, N.H. Voler Nova Science, ed. (2007).
  4. S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Aude-bert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Mater. 57(11), 3301–3309 (2009). [CrossRef]
  5. G. Lanty, A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds,” N. J. Phys. 10(6), 065007 (2008). [CrossRef]
  6. G. Lanty, J. S. Lauret, E. Deleporte, S. Bouchoule, and X. Lafosse, “UV polaritonic emission from a perovskite-based microcavity,” Appl. Phys. Lett. 93(8), 081101 (2008). [CrossRef]
  7. A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, “Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors,” Appl. Phys. Lett. 89(17), 171110 (2006). [CrossRef]
  8. J. Wenus, R. Parashkov, S. Ceccarelli, A. Brehier, J. S. Lauret, M. S. Skolnick, E. Deleporte, and D. G. Lidzey, “Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity,” Phys. Rev. B 74(23), 235212 (2006). [CrossRef]
  9. J. I. Fujisawa and T. Ishihara, “Charge-transfer transitions between wires and spacers in an inorganic-organic quasi-one dimensional crystal methylviologen lead iodide,” Phys. Rev. B 70(11), 113203 (2004). [CrossRef]
  10. J. I. Fujisawa and T. Ishihara, “Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic layered lead iodide semiconductor,” Phys. Rev. B 70(20), 205330 (2004). [CrossRef]
  11. M. Shimizu and J. I. Fujisawa, “Exciton-exciton interaction in an inorganic-organic layered semiconductor, (C6H5C2H4NH3)2PbI4,” J. Lumin. 108(1-4), 189–194 (2004). [CrossRef]
  12. T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4, ” Solid state comm. 105, 253–255 (1998).
  13. K. Tanaka, F. Sano, T. Takahashi, T. Kondo, R. Ito, and K. Ema, “Two dimensional Wannier excitons in a layered-perovskite-type crystal (C6H13NH3)2PbI4,” Solid sate comm. 122, 249–252 (2002).
  14. T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combiend with emissive layered-perovskite and an electron-transporting organic compound,” Chem. Phys. Lett. 254(1-2), 103–108 (1996). [CrossRef]
  15. X. Hong, T. Ishihara, and A. V. Nurmiko, “Dielectric confinement effect on excitons in PbI4-based layered semiconductors,” Phys. Rev. B 45(12), 6961–6964 (1992). [CrossRef]
  16. T. Ishihara, J. Takahashi, and T. Goto, “Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4,” Solid State Commun. 69(9), 933–936 (1989). [CrossRef]
  17. T. Ishihara, J. Takahashi, and T. Goto, “Optical properties due to electronic transitions in two dimensional semiconductors (CnH2n+1NH3)2PbI4,” Phys. Rev. B 42(17), 11099–11107 (1990). [CrossRef]
  18. T. Ishihara, X. Hong, J. Ding, and N. V. Nurmikko, “Dielectric confinement effect for exciton and biexciton states in PbI4-based two dimensional semiconductor structures,” Surf. Sci. 267(1-3), 323–326 (1992). [CrossRef]
  19. C. Q. Xu, H. Sakakura, T. Kondo, S. Takeyama, N. Miura, Y. Takahashi, K. Kumata, and R. Ito, “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40T,” Solid State Commun. 79(3), 249–253 (1991). [CrossRef]
  20. X. Hong, T. Ishihara, and A. V. Nurmiko, “Photoconductivity and electroluminescence in lead iodide based natural quantum well structures,” Solid State Commun. 84(6), 657–661 (1992). [CrossRef]
  21. C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Commun. 77(12), 923–926 (1991). [CrossRef]
  22. T. Kataoaka, T. Kondo, R. Ito, S. Sasaki, K. Uchida, and N. Miura, “Magneto-optical study on excitonic spectra in (C6H13NH3)2PbI4,” Phys. Rev. B 47(4), 2010–2018 (1993). [CrossRef]
  23. E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, “Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds,” Phys. Rev. B 51(20), 14370–14378 (1995). [CrossRef]
  24. M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device unsing a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Appl. Phys. Lett. 65(6), 676–678 (1994). [CrossRef]
  25. T. Goto, H. Makino, T. Yao, C. H. Chia, T. Makino, Y. Segawa, G. A. Mousdis, and G. C. Papavassiliou, “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Phys. Rev. B 73(11), 115206 (2006). [CrossRef]
  26. M. Shimizu, J. I. Fujisawa, and T. Ishihara, “Photoluminescence of the inorganic-organic layered semiconductor (C6H5C2H4NH3)2PbI4: Observation of triexciton formation,” Phys. Rev. B 74(15), 155206 (2006). [CrossRef]
  27. K. Ema, M. Inomata, Y. Kato, H. Kunugita, and M. Era, “Nearly perfect triplet-triplet energy transfer from Wannier excitons to naphthalene in organic-inorganic hybrid quantum-well materials,” Phys. Rev. Lett. 100(25), 257401 (2008). [CrossRef] [PubMed]
  28. T. Fujita, Y. Sato, T. Kuitani, and T. Ishihara, “Tunable polariton absorption of distributed feedback microcavities at room temperature,” Phys. Rev. B 57(19), 12428–12434 (1998). [CrossRef]
  29. A. Kavokin, and G. Malpuech, Cavity Polaritons (Elsevier, Amsterdam, 2003).
  30. D. Bajoni, P. Senellart, E. Wertz, I. Sagnes, A. Miard, A. Lemaître, and J. Bloch, “Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities,” Phys. Rev. Lett. 100(4), 047401 (2008). [CrossRef] [PubMed]
  31. S. Christopoulos, G. B. von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, N. Grandjean, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98(12), 126405 (2007). [CrossRef] [PubMed]
  32. L. V. Keldysh, JETP Lett. 29, 658 (1979).
  33. M. Kumagai and T. Takagahara, “Excitonic and nonlinear optical properties of dielectric quantum-well structures,” Phys. Rev. B 40(18), 12359–12381 (1989). [CrossRef]
  34. J. Lee, E. S. Koteles, and M. O. Vassel, “Luminescence linewidths of excitons in GaAs quantum wells below 150K,” Phys. Rev. B 33(8), 5512–5516 (1986). [CrossRef]
  35. M. S. Skolnick and D. Bimberg, “Angular-dependent magnetoluminescence study of the layer compound 2H-PbI2,” Phys. Rev. B 18(12), 7080–7088 (1978). [CrossRef]
  36. V. G. Plekhanov, “Lead Halides: electronic properties and applications,” Prog. Mater. Sci. 49(6), 787–886 (2004). [CrossRef]
  37. T. Goto and S. Saito, “Optical properties of ultrathin PbI2 microcrystallite in polymer,” J. Lumin. 70(1-6), 435–447 (1996). [CrossRef]
  38. H. Kudo, K. Murakami, H. Ishibashi, R. Zheng, Y. Yamada, and T. Taguchi, “Temperature independent Stokes Shift in an In 0.08 Ga 0.92 N Epitaxial Layer Reavealed by Photoluminescence excitation spectroscopy,” Phys. Status Solidi 228(1), 55–58 (2001) (b). [CrossRef]
  39. I. Ch. Schluter and M. Schluter, “Electronic structure and optical properties of PbI2,” Phys. Rev. B 9(4), 1652–1663 (1974). [CrossRef]
  40. K. Ema, K. Umeda, M. Toda, C. Yajima, Y. Arai, H. Kunugita, D. Wolverson, and J. J. Davies, “Huge exchange energy and fine structure of excitons in an organic-inorganic quantum wellmaterial,” Phys. Rev. B 73(24), 241310 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited