OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5934–5941

Space-time bullet trains via modulation instability and nonlocal solitons

Marco Peccianti, Ian B. Burgess, Gaetano Assanto, and Roberto Morandotti  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5934-5941 (2010)
http://dx.doi.org/10.1364/OE.18.005934


View Full Text Article

Enhanced HTML    Acrobat PDF (782 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce the generation of dense trains of light-bullets in nonlocal nonlinear dielectrics. We exploit stable spatio-temporal self-trapped optical packets stemming from the interplay between local electronic and nonlocal reorientational nonlinearities, considering a seeded temporal modulation instability by specifically referring to nematic liquid crystals.

© 2010 OSA

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 8, 2009
Revised Manuscript: February 7, 2010
Manuscript Accepted: February 16, 2010
Published: March 10, 2010

Citation
Marco Peccianti, Ian B. Burgess, Gaetano Assanto, and Roberto Morandotti, "Space-time bullet trains via modulation instability and nonlocal solitons," Opt. Express 18, 5934-5941 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, New York, 1982).
  2. H. C. Morris, P. G. Drazin, and R. S. Johnson, Solitons: an introduction (Cambridge University Press, New York, 1989).
  3. Y. S. Kivshar, and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, New York, 2003).
  4. A. C. Newell, Solitons in Mathematics and Physics (SIAM, Philadelphia, 1985).
  5. 5H. S. Eisenberg, R. Morandotti, Y. Silberberg, S. Bar-Ad, D. Ross, and J. S. Aitchison, “Kerr spatiotemporal self-focusing in a planar glass waveguide,” Phys. Rev. Lett. 87(4), 043902 (2001). [CrossRef] [PubMed]
  6. J. E. Bjorkholm and A. Ashkin, “CW self-focusing and self-trapping of light in Sodium vapor,” Phys. Rev. Lett. 32(4), 129–132 (1974). [CrossRef]
  7. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68(7), 923–935 (1992). [CrossRef] [PubMed]
  8. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71(4), 533–536 (1993). [CrossRef] [PubMed]
  9. A. Dubietis, E. Gaizauskas, G. Tamosauskas, and P. Di Trapani, “Light filaments without self-channeling,” Phys. Rev. Lett. 92(25), 253903 (2004). [CrossRef] [PubMed]
  10. A. Pasquazi, S. Stivala, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Near-infrared spatial solitons in heavy metal oxide glasses,” Opt. Lett. 32(15), 2103–2105 (2007). [CrossRef] [PubMed]
  11. E. D’Asaro, S. Heidari-Bateni, A. Pasquazi, G. Assanto, J. Gonzalo, J. Solis, and C. N. Afonso, “Interaction of self-trapped beams in high index glass,” Opt. Express 17(19), 17150–17155 (2009). [CrossRef] [PubMed]
  12. A. W. Snyder and D. J. Mitchell, “Accessible Solitons,” Science 276(5318), 1538–1541 (1997). [CrossRef]
  13. Y. R. Shen, “Solitons made simple,” Science 276(5318), 1520–1521 (1997). [CrossRef]
  14. C. Conti, M. Peccianti, and G. Assanto, “Route to nonlocality and observation of accessible solitons,” Phys. Rev. Lett. 91(7), 073901 (2003). [CrossRef] [PubMed]
  15. M. Peccianti and G. Assanto, “Nematic liquid crystals: A suitable medium for self-confinement of coherent and incoherent light,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(3), R035603 (2002). [CrossRef]
  16. C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92(11), 113902 (2004). [CrossRef] [PubMed]
  17. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in liquid crystals,” Nature 432(7018), 733–737 (2004). [CrossRef] [PubMed]
  18. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15(22), 1282–1284 (1990). [CrossRef] [PubMed]
  19. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B Quantum Semiclassical Opt. 7(5), R53–R72 (2005). [CrossRef]
  20. D. Mihalache, D. Mazilu, F. Lederer, B. Malomed, Y. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 025601 (2006). [CrossRef] [PubMed]
  21. I. B. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102(20), 203903 (2009). [CrossRef] [PubMed]
  22. H. C. Gurgov and O. Cohen, “Spatiotemporal pulse-train solitons,” Opt. Express 17(9), 7052–7058 (2009). [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  24. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9(7), 288–290 (1984). [CrossRef] [PubMed]
  25. M. Peccianti, C. Conti, and G. Assanto, “Observation of optical modulational instability in a non-local medium,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, R025602 (2003). [CrossRef]
  26. G. Assanto, M. Peccianti, and C. Conti, “One dimensional transverse modulational instability in nonlocal media with a reorientational nonlinearity,” IEEE J. Sel. Top. Quantum Electron. 10(5), 862–869 (2004). [CrossRef]
  27. S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, and E. M. Dianov, “Generation of soliton pulse train in optical fibre using two CW single mode diode lasers,” Electron. Lett. 28(10), 931–932 (1992). [CrossRef]
  28. J. Li, S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1387 KB)     
» Media 2: MOV (1141 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited