OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5942–5950

Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion

Ran Hao, Eric Cassan, Hamza Kurt, Xavier Le Roux, Delphine Marris-Morini, Laurent Vivien, Huaming Wu, Zhiping Zhou, and Xinliang Zhang  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5942-5950 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1390 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel type of slow light photonic crystal waveguide which can produce unusual “U” type group index - frequency curves with constant group index n g over large bandwidth. By shifting the boundaries of this waveguide, flexible control of n g (10 < n g < 210) with large bandwidth (1nm<Δλ<43nm centered at 1550nm) and normalized Delay-Bandwidth Product (0.1363<DBP<0.3143) are achieved. Additionally, depending on the chosen waveguide geometry, extremely low group velocity dispersion (GVD<0.5 ps.nm−1.mm−1), with controllable group velocity dispersion of both signs is obtained.

© 2010 OSA

OCIS Codes
(200.4490) Optics in computing : Optical buffers
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Slow and Fast Light

Original Manuscript: December 14, 2009
Revised Manuscript: February 3, 2010
Manuscript Accepted: February 3, 2010
Published: March 10, 2010

Ran Hao, Eric Cassan, Hamza Kurt, Xavier Le Roux, Delphine Marris-Morini, Laurent Vivien, Huaming Wu, Zhiping Zhou, and Xinliang Zhang, "Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion," Opt. Express 18, 5942-5950 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nat. 438(7064), 65–69 (2005). [CrossRef]
  2. R. Won, “Slow light now and then,” Nat. Photonics 2(8), 454–455 (2008). [CrossRef]
  3. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2(8), 448–450 (2008). [CrossRef]
  4. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2(8), 465–473 (2008). [CrossRef]
  5. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]
  6. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001). [CrossRef] [PubMed]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003). [CrossRef] [PubMed]
  8. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 113903, 87 (2001). [CrossRef] [PubMed]
  9. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18(10), 1402–1411 (2000). [CrossRef]
  10. E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006). [CrossRef] [PubMed]
  11. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006). [CrossRef] [PubMed]
  12. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  13. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15(13), 8323–8328 (2007). [CrossRef] [PubMed]
  14. J. Hou, D. Gao, H. Wu, and R. Hao, “Flat Band Slow Light in Symmetric Line Defect Photonic Crystals Waveguide,” IEEE Photon. Tech. Lett. 21, 1571-1573 (2009). [CrossRef]
  15. L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay-bandwidth product,” Appl. Phys. B 95(1), 105–111 (2009). [CrossRef]
  16. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008). [CrossRef] [PubMed]
  17. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005). [CrossRef] [PubMed]
  18. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  19. D. Marris-Morini, E. Cassan, D. Bernier, G. Maire, and L. Vivien, “Ultracompact tapers for light coupling into two-dimensional slab photonic-crystal waveguides in the slow light regime,” Opt. Eng. 47(1), 014602 (2008). [CrossRef]
  20. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007). [CrossRef] [PubMed]
  21. C. Martijn de Sterke, K. B. Dossou, T. P. White, L. C. Botten, and R. C. McPhedran, “Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes,” Opt. Express 17(20), 17338–17343 (2009). [CrossRef] [PubMed]
  22. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15(9), 5264–5270 (2007). [CrossRef] [PubMed]
  23. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett. 34(3), 359–361 (2009). [CrossRef] [PubMed]
  24. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007). [CrossRef] [PubMed]
  25. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20(14), 1237–1239 (2008). [CrossRef]
  26. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14(4), 1658–1672 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 6

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited