OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5951–5956

Carbon ion implanted Nd:MgO:LiNbO3 optical channel waveguides: an intermediate step between light and heavy ion implanted waveguides

Ning-Ning Dong, Feng Chen, and Daniel Jaque  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 5951-5956 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the micron-luminescent properties of carbon ion implanted optical channel waveguides in the Nd:MgO:LiNbO3 laser crystals. The confocal fluorescence images of the waveguide’s cross section are presented based on the analysis of the spatial variation of the Nd3+ fluorescence properties. We have found that the carbon ion implanted waveguides exhibit hybrid fluorescence properties of both hydrogen and oxygen ion implanted waveguides, which clearly denotes a “boundary” effect of light and heavy ions for waveguide formation in lithium niobate crystals.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3730) Integrated optics : Lithium niobate
(230.7380) Optical devices : Waveguides, channeled
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Integrated Optics

Original Manuscript: December 21, 2009
Revised Manuscript: February 10, 2010
Manuscript Accepted: February 22, 2010
Published: March 10, 2010

Ning-Ning Dong, Feng Chen, and Daniel Jaque, "Carbon ion implanted Nd:MgO:LiNbO3 optical channel waveguides: an intermediate step between light and heavy ion implanted waveguides," Opt. Express 18, 5951-5956 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi, A Appl. Res. 201(2), 253–283 (2004). [CrossRef]
  2. K. K. Wong, “Properties of Lithium Niobate,” (INSPEC, London, 2002).
  3. M. N. Palatnikov, I. V. Biryukova, N. V. Sidorov, A. V. Denisov, V. T. Kalinnikov, P. G. R. Smith, and V. Y. Shur, “Growth and concentration dependencies of rare-earth doped lithium niobate single crystals,” J. Cryst. Growth 291(2), 390–397 (2006). [CrossRef]
  4. T. Y. Fan, A. Cordova-Plaza, M. J. F. Digonnet, R. L. Byer, and H. J. Shaw, “Nd:MgO:LiNbO3 spectroscopy and laser devices,” J. Opt. Soc. Am. B 3(1), 140–148 (1986). [CrossRef]
  5. I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layers in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 22(7), 326–328 (1973). [CrossRef]
  6. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO3 channel waveguides,” Opt. Express 15(14), 8805–8811 (2007). [CrossRef] [PubMed]
  7. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28(16), 1433–1435 (2003). [CrossRef] [PubMed]
  8. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006). [CrossRef]
  9. P. Zhang, Y. Ma, J. Zhao, D. Yang, and H. Xu, “One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal,” Appl. Opt. 45(10), 2273–2278 (2006). [CrossRef] [PubMed]
  10. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009). [CrossRef]
  11. P. D. Townsend, P. J. Chandler, and L. Zhang, “Optical Effects of Ion Implantation,” (Cambridge Univ. Press, Cambridge, 1994).
  12. A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, and F. Agulló-López, “Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO3,” Phys. Stat. Solidi A 206(6), 1109–1116 (2009). [CrossRef]
  13. S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101(9), 094109 (2007). [CrossRef]
  14. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002). [CrossRef]
  15. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005). [CrossRef]
  16. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89(9), 5224–5226 (2001). [CrossRef]
  17. M. Bianconi, G. G. Bentini, M. Chiarini, P. De Nicola, G. B. Montanari, A. Nubile, and S. Sugliani, “Defect engineering and micromachining of Lithium Niobate by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 267(17), 2839–2845 (2009). [CrossRef]
  18. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009). [CrossRef]
  19. D. Jaque, F. Chen, and Y. Tan, “Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3,” Appl. Phys. Lett. 92(16), 161908 (2008). [CrossRef]
  20. F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008). [CrossRef]
  21. R. Regener and W. Sohler, “Loss in Low-Finesse Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B 36(3), 143–147 (1985). [CrossRef]
  22. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  23. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004). [CrossRef]
  24. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. C. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO(3) channel waveguides,” Opt. Express 15(14), 8805–8811 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited