OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5957–5963

Bragg-grating-enhanced narrowband spontaneous parametric downconversion

Li Yan, Lijun Ma, and Xiao Tang  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5957-5963 (2010)
http://dx.doi.org/10.1364/OE.18.005957


View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new method to narrow the line width of entangled photons generated from spontaneous parametric downconversion (SPDC). The single structure device incorporates an internal Bragg grating onto a nonlinear optical waveguide. We study theoretically the spectral characteristics of SPDC under two Bragg grating structures. We show that using the Bragg grating with a midway π-phase shifter, it is a promising way to generate narrow-line (~GHz to sub-GHz) entangled photons.

© 2010 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: December 22, 2009
Revised Manuscript: February 3, 2010
Manuscript Accepted: March 3, 2010
Published: March 10, 2010

Citation
Li Yan, Lijun Ma, and Xiao Tang, "Bragg-grating-enhanced narrowband spontaneous parametric downconversion," Opt. Express 18, 5957-5963 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5957


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  2. D. Bouwmeester, J. W. Pan, K. Mattele, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997). [CrossRef]
  3. O. Landry, J. A. W. van Houwelingen, A. Beveratos, H. Zbinden, and N. Gisin, “Quantum teleportation over the Swisscom telecommunication network,” J. Opt. Soc. Am. B 24(2), 398 (2007). [CrossRef]
  4. J. Yang, X. Bao, H. Zhang, S. Chen, C. Peng, Z. Chen, and J. Pan, “Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources,” Phys. Rev. A 80(4), 042321 (2009). [CrossRef]
  5. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental nonlocality proof of quantum teleportation and entanglement swapping,” Phys. Rev. Lett. 88, 017903 (1998).
  6. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys. 3(10), 692–695 (2007). [CrossRef]
  7. R. Kaltenbaek, R. Prevedel, M. Aspelmeyer, and A. Zeilinger, “High-fidelity entanglement swapping with fully independent sources,” Phys. Rev. A 79, 040302(R) (2009). [CrossRef]
  8. H. Takesue and B. Miquel, “Entanglement swapping using telecom-band photons generated in fibers,” Opt. Express 17(13), 10748–10756 (2009). [CrossRef] [PubMed]
  9. P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “ High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801(R) (2010). [CrossRef]
  10. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001). [CrossRef] [PubMed]
  11. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007). [CrossRef] [PubMed]
  12. A. Martin, V. Cristofori, P. Aboussouan, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “Integrated optical source of polarization entangled photons at 1310 nm,” Opt. Express 17(2), 1033–1041 (2009). [CrossRef] [PubMed]
  13. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17(14), 12019–12030 (2009). [CrossRef] [PubMed]
  14. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008). [CrossRef] [PubMed]
  15. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, I. A. Walmsley, and P. Road, “Towards high-speed optical quantum memories,” arXiv:0912.2970v1, 15 Dec (2009).
  16. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  17. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007). [CrossRef] [PubMed]
  18. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314 (2008). [CrossRef]
  19. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83(13), 2556–2559 (1999). [CrossRef]
  20. Y. J. Lu, R. L. Campbell, and Z. Y. Ou, “Mode-locked two-photon states,” Phys. Rev. Lett. 91(16), 163602 (2003). [CrossRef] [PubMed]
  21. H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70(4), 043804 (2004). [CrossRef]
  22. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97(22), 223601 (2006). [CrossRef] [PubMed]
  23. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15(13), 7940–7949 (2007). [CrossRef] [PubMed]
  24. M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91(19), 191104 (2007). [CrossRef]
  25. F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16(22), 18145–18151 (2008). [CrossRef] [PubMed]
  26. M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A 72(2), 023825 (2005). [CrossRef]
  27. K. Thyagarajan, R. Das, O. Alibart, M. d. Micheli, D. B. Ostrowsky, and S. Tanzilli, “Increased pump acceptance bandwidth in spontaneous parametric downconversion process using Bragg reflection waveguides,” Opt. Express 16(6), 3577–3582 (2008). [CrossRef] [PubMed]
  28. A. C. Chiang, Y. Y. Lin, T. D. Wang, Y. C. Huang, and J. T. Shy, “Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate,” Opt. Lett. 27(20), 1815–1817 (2002). [CrossRef]
  29. L. Ma, O. Slattery, T. Chang, and X. Tang, “Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide,” Opt. Express 17(18), 15799–15807 (2009). [CrossRef] [PubMed]
  30. Y.-C. Huang and Y.-Y. Lin, “Coupled-wave theory for distributed-feedback optical parametric amplifiers and oscillators,” J. Opt. Soc. Am. B 21(4), 777–790 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited