OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5974–5983

High-speed asynchronous optical sampling with sub-50fs time resolution

R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5974-5983 (2010)
http://dx.doi.org/10.1364/OE.18.005974


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an ultrafast time-domain spectroscopy system based on high-speed asynchronous optical sampling operating without mechanical scanner. The system uses two 1 GHz femtosecond oscillators that are offset-stabilized using high-bandwidth feedback electronics operating at the tenth repetition rate harmonics. Definition of the offset frequency, i.e. the time-delay scan rate, in the range of a few kilohertz is accomplished using direct-digital-synthesis electronics for the first time. The time-resolution of the system over the full available 1 ns time-delay window is determined by the laser pulse duration and is 45 fs. This represents a three-fold improvement compared to previous approaches where timing jitter was the limiting factor. Two showcase experiments are presented to verify the high time-resolution and sensitivity of the system.

© 2010 OSA

OCIS Codes
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7150) Ultrafast optics : Ultrafast spectroscopy
(340.7470) X-ray optics : X-ray mirrors
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Spectroscopy

History
Original Manuscript: January 21, 2010
Revised Manuscript: March 4, 2010
Manuscript Accepted: March 4, 2010
Published: March 10, 2010

Citation
R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, "High-speed asynchronous optical sampling with sub-50fs time resolution," Opt. Express 18, 5974-5983 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5974


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Demsar, B. Podobnik, V. V. Kabanov, Th. Wolf, and D. Mihailovic, “Superconducting gap ∆c, the pseudogap ∆p, and pair fluctuations above Tc in overdoped Y1-xCaxBa2Cu3O7-δ from femtosecond time-domain spectroscopy,” Phys. Rev. Lett. 82(24), 4918–4921 (1999). [CrossRef]
  2. M. Krauß, H. C. Schneider, R. Bratschitsch, Z. Chen, and S. T. Cundiff, “Ultrafast spin dynamics in optically excited bulk GaAs at low temperatures,” Phys. Rev. B 81(3), 035213 (2010). [CrossRef]
  3. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001). [CrossRef] [PubMed]
  4. A. Crut, P. Maioli, N. D. Fatti, and F. Vallée, “Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects,” Phys. Chem. Chem. Phys. 11(28), 5882–5888 (2009). [CrossRef] [PubMed]
  5. T. Dekorsy, G. C. Cho, and H. Kurz, “Coherent phonons in condensed media”, in Light Scattering in Solids VIII, Book Series: Topics in Applied Physics, 76, 169–209, (Springer, Berlin, 1999).
  6. F. Hudert, A. Bruchhausen, D. Issenmann, O. Schecker, R. Waitz, A. Erbe, E. Scheer, T. Dekorsy, A. Mlayah, and J.-R. Huntzinger, “Confined longitudinal acoustic phonon modes in free-standing Si membranes coherently excited by femtosecond laser pulses,” Phys. Rev. B 79(20), 201307 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited