OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 5993–6007

A comprehensive study for the plasmonic thin-film solar cell with periodic structure

Wei E. I. Sha, Wallace C. H. Choy, and Weng Cho Chew  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 5993-6007 (2010)
http://dx.doi.org/10.1364/OE.18.005993


View Full Text Article

Enhanced HTML    Acrobat PDF (2221 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comprehensive study of the plasmonic thin-film solar cell with the periodic strip structure is presented in this paper. The finite-difference frequency-domain method is employed to discretize the inhomogeneous wave function for modeling the solar cell. In particular, the hybrid absorbing boundary condition and the one-sided difference scheme are adopted. The parameter extraction methods for the zeroth-order reflectance and the absorbed power density are also discussed, which is important for testing and optimizing the solar cell design. For the numerical results, the physics of the absorption peaks of the amorphous silicon thin-film solar cell are explained by electromagnetic theory; these peaks correspond to the waveguide mode, Floquet mode, surface plasmon resonance, and the constructively interference between adjacent metal strips. The work is therefore important for the theoretical study and optimized design of the plasmonic thin-film solar cell.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.6805) Thin films : Theory and design

ToC Category:
Solar Energy

History
Original Manuscript: February 9, 2010
Revised Manuscript: March 4, 2010
Manuscript Accepted: March 5, 2010
Published: March 10, 2010

Citation
Wei E. I. Sha, Wallace C. H. Choy, and Weng Cho Chew, "A comprehensive study for the plasmonic thin-film solar cell with periodic structure," Opt. Express 18, 5993-6007 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-5993


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003)
  2. P. Würfel, Physics of Solar Cells: From Principles to New Concepts (Wiley-VCH, Berlin, 2004).
  3. K. L. Chopra, P. D. Paulson, and V. Dutta, "Thin-film solar cells: An overview," Prog. Photovoltaics 12, 69-92 (2004). [CrossRef]
  4. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111111 (2006). [CrossRef]
  5. C. Haase, and H. Stiebig, "Thin-film silicon solar cells with efficient periodic light trapping texture," Appl. Phys. Lett. 91, 061116 (2007). [CrossRef]
  6. H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, "Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern," Appl. Phys. Lett. 93, 143501 (2008). [CrossRef]
  7. W. Zhou, M. Tao, L. Chen, and H. Yang, "Microstructured surface design for omnidirectional antireflection coatings on solar cells," J. Appl. Phys. 102, 103105 (2007). [CrossRef]
  8. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  9. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sens. Actuators B. 54, 3-15 (1999). [CrossRef]
  10. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404-406 (2002). [CrossRef]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  12. K. Kato, H. Tsuruta, T. Ebe, K. Shinbo, F. Kaneko, and T. Wakamatsu, "Enhancement of optical absorption and photocurrents in solar cells of merocyanine Langmuir-Blodgett films utilizing surface plasmon excitations," Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 22, 251-256 (2002) [CrossRef]
  13. K. Tvingstedt, N. K. Persson, O. Inganas, A. Rahachou, and I. V. Zozoulenko, "Surface plasmon increase absorption in polymer photovoltaic cells," Appl. Phys. Lett. 91, 113514 (2007). [CrossRef]
  14. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic nanostructure design for efficient light coupling into solar cells," Nano Lett. 8, 4391-4397 (2008) [CrossRef]
  15. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, "Design of plasmonic thin-film solar cells with broadband absorption enhancements," Adv. Mater. 21, 3504-3509 (2009) [CrossRef]
  16. M. Qiu, and S. L. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268-8275 (2000). [CrossRef]
  17. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  18. K. G. Ong, O. K. Varghese, G. K. Mor, K. Shankar, and C. A. Grimes, "Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption," Sol. Energy Mater. Sol. Cells 91, 250-257 (2007). [CrossRef]
  19. Z. M. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002) [PubMed]
  20. C. P. Yu and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Opt. Express 12, 1397-1408 (2004). [CrossRef] [PubMed]
  21. R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat. 32, 222-227 (1990). [CrossRef]
  22. D. F. Kelley and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag. 44, 792-797 (1996). [CrossRef]
  23. G. Veronis and S. Fan, "Overview of Simulation Techniques for Plasmonic Devices," in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds., (Springer, Dordrecht, The Netherlands, 2007)
  24. M. E. Veysoglu, R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique-incidence case," J. Electromagn. Waves Appl. 7, 1595-1607 (1993). [CrossRef]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).
  26. S. Zhao and G. W. Wei, "High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces," J. Comput. Phys. 200, 60-103 (2004). [CrossRef]
  27. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Wiley-IEEE Press, New York, 2000).
  28. A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, "The failure of perfectly matched layers and towards their redemption by adiabatic absorbers," Opt. Express 16, 11376-11392 (2008). [CrossRef] [PubMed]
  29. W. C. Chew, Waves and Fields in Inhomogenous Media (Van Nostrand Reinhold, New York, 1990).
  30. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  31. W. C. Chew and W. H. Weedon, "A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microw. Opt. Technol. Lett. 7, 599-604 (1994). [CrossRef]
  32. W. C. Chew, J. M. Jin, and E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microw. Opt. Technol. Lett. 15, 363-369 (1997). [CrossRef]
  33. C. M. Rappaport, M. Kilmer, and E. Miller, "Accuracy considerations in using the PML ABC with FDFD Helmholtz equation computation," Int. J. Numer. Model.-Electron. Netw. Device Fields 13, 471-482 (2000). [CrossRef]
  34. G. Mur, "Absorbing boundary-conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat. 23, 377-382 (1981). [CrossRef]
  35. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic-waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  36. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 12, 1068-1076 (1995). [CrossRef]
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, London, 1998).
  38. X.W. Chen, W. C. H. Choy, and S. L. He, "Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes," J. Disp. Technol. 3, 110-117 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited