OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6040–6047

Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures

Sanshui Xiao, Liang Peng, and Niels Asger Mortensen  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6040-6047 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transmission through sub-wavelength apertures in perfect metals is expected to be strongly suppressed. However, by structural engineering of the apertures, we numerically demonstrate that the transmission of transverse electric waves through periodic arrays of subwavelength apertures in a thin metallic film can be significantly enhanced. Based on equivalent circuit theory analysis, periodic arrays of square structured subwavelength apertures are obtained with a 1900-fold transmission enhancement factor when the side length a of the apertures is 10 times smaller than the wavelength (a/λ= 0.1). By examining the induced surface currents and investigating the influence of the lattice constant and the incident angle to the resonant frequency, we show that the enhancement is due to the excitation of the strong localized resonant modes of the structured apertures.

© 2010 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(240.7040) Optics at surfaces : Tunneling

ToC Category:
Diffraction and Gratings

Original Manuscript: November 30, 2009
Revised Manuscript: February 25, 2010
Manuscript Accepted: March 6, 2010
Published: March 11, 2010

Sanshui Xiao, Liang Peng, and Niels Asger Mortensen, "Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures," Opt. Express 18, 6040-6047 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  2. A. Roberts, "Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen," J. Opt. Soc. Am. A 4, 1970-1983 (1987). [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  4. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  5. J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2853 (1999). [CrossRef]
  6. L. Martin-Moreno, F. J. Garca-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phy. Rev. Lett. 86, 1114-1117 (2001). [CrossRef]
  7. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001). [CrossRef]
  8. Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006). [CrossRef] [PubMed]
  9. S. Collin, C. Sauvan, C. Billaudeau, F. Pardo, J. C. Rodier, J. L. Pelouard, and P. Lalanne, "Surface modes on nanostructured metallic surfaces," Phys. Rev. B 79, 165405 (2009). [CrossRef]
  10. P. Lalanne, J. C. Rodier, and J. P. Hugonin "Surface plasmons of metallic surfaces perforated by nanohole arrays," J. Opt. A: Pure Appl. Opt. 7, 422-426 (2005). [CrossRef]
  11. S. Xiao, N. A. Mortensen and M. Qiu, "Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer," J. Eur. Opt. Soc. Rapid Publ. 3, 08022 (2008). [CrossRef]
  12. B. F. Bai, L. F. Li, and L. J. Zeng, "Experimental verification of enhanced transmission through twodimensionally corrugated metallic films without holes," Opt. Lett. 30, 2360-2362 (2005). [CrossRef] [PubMed]
  13. A. Giannattasio, H. Ian, and B. William, "Transmission of light through thin silver films via surface plasmon-polaritons," Opt. Express 12, 5881-5886 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5881. [CrossRef] [PubMed]
  14. N. Bonod, S. Enoch, L. L, E. Popov, and M. Neviere, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-5-482 [CrossRef] [PubMed]
  15. I. Avrutsky, Y. Zhao, and V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595-597 (2000). [CrossRef]
  16. S. Xiao and M. Qiu, "Theoretical study of the transmission properties of a metallic film with surface corrugations," J. Opt. A: Pure Appl. Opt. 9, 348-351 (2005). [CrossRef]
  17. F. J. Garcıa-Vidal, E. Moreno, J. A. Porto, and L. Martın-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]
  18. F. I. Baida and D. Van Labeke, "Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays," Phys. Rev. B 67, 155314-155320 (2003). [CrossRef]
  19. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, "Trong polarization in the optical transmission through elliptical nanohole arrays," Phys. Rev. Lett. 92, 037401 (2004). [CrossRef] [PubMed]
  20. M. I. Haftel, C. Schlockermann, and G. Blumeberg, "Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons," Phys. Rev. B 74, 235405-235415 (2006). [CrossRef]
  21. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, "split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture," Phys. Rev. Lett. 102, 013904 (2009). [CrossRef] [PubMed]
  22. A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, "Enhanced transmission through a subwavelength aperture using metamaterials," Appl Phys. Lett. 95, 052103 (2009). [CrossRef]
  23. Y. Ye and Y. Jin, "Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film," Phy. Rev. E 80, 036606 (2009). [CrossRef]
  24. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  25. A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308, 670-672 (2005). [CrossRef] [PubMed]
  26. L. Shen, X. Chen, and T. J. Tang, "Terahertz surface plasmon polaritons on periodically corrugated metal surfaces," Opt. Express 16, 3326-3333 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-5-3326 [CrossRef] [PubMed]
  27. Z. Ruan, and M. Qiu, "Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface," Appl. Phys. Lett. 90, 201906 (2007). [CrossRef]
  29. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef]
  30. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory," Phys. Rev. B 72, 045421 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited