OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6108–6115

400-Channel 25-GHz-spacing SOI-based planar waveguide demultiplexer employing a concave grating across C- and L-bands

Chun-Ting Lin  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6108-6115 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The 400-channel 25-GHz-spacing SOI-based planar waveguide demultiplexer employing a concave grating across C- and L-bands is proposed in this paper. For the high polarization dependence, the waveguides are designed for supporting the TE mode only. To reduce the spherical aberration of the concave grating, the values of the maximum half divergent angle of the light source and minimum effective half width of the fundamental mode of the ridge waveguide are determined. We use a design example to show the spectral characteristics of the proposed design. Simulation results show that the proposed design provides better spectral characteristics and smaller die size.

© 2010 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: January 5, 2010
Revised Manuscript: March 1, 2010
Manuscript Accepted: March 3, 2010
Published: March 11, 2010

Chun-Ting Lin, "400-Channel 25-GHz-spacing SOI-based planar waveguide demultiplexer employing a concave grating across Cand L-bands," Opt. Express 18, 6108-6115 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. V. Kartalopoulos, Introduction to DWDM Technology (IEEE Press, New York, 2000).
  2. K. Takada, M. Ade, T. Shibita, and K. Okamoto, "A 25-GHz-spaced 1080-channel tandem multi/demultiplexer covering the S-, C-, and L-bands using an arrayed-waveguide grating with Gaussian passbands as primary filter," IEEE Photon. Technol. Lett. 14(5), 648-650 (2002). [CrossRef]
  3. Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," IEEE J. Sel. Top. Quantum Electron 8(6), 1090-1101 (2002). [CrossRef]
  4. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, "Design and applications of silica-based planar lightwave circuits," IEEE J. Sel. Top. Quantum Electron 5(5), 1227-1236 (1999). [CrossRef]
  5. D. Dai and S. He, "Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires," Opt. Lett. 31(13), 1988-1990 (2006). [CrossRef] [PubMed]
  6. K. Maru and Y. Abe, "Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer," Opt. Express 15(26), 18351-18356 (2007). [CrossRef] [PubMed]
  7. K. A. McGreer, "Theory of concave gratings based on a recursive definition of facet positions," Appl. Opt. 35(30), 5904-5910 (1996). [CrossRef] [PubMed]
  8. J.-J. He, E. S. Koteles, B. Lamontagne, L. Erickson, A. Delˆage, and M. Davies, "Integrated Polarization Compensator for WDM Waveguide Demultiplexers," IEEE Photon. Technol. Lett. 11(2), 321-322 (1999). [CrossRef]
  9. Z. Shi and S. He, "A three-focal-point method for the optimal design of a flat-top planar waveguide demultiplexer," IEEE J. Sel. Top. Quantum Electron 8(6), 1179-1185 (2002). [CrossRef]
  10. J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform," J. Lightwave Technol. 25(5), 1269-1275 (2007). [CrossRef]
  11. C.-T. Lin, Y.-T. Huang, and J.-Y. Huang, "Quantitative analysis of a flat-top planar waveguide demultiplexer," J. Lightwave Technol. 27(5), 552-558 (2009). [CrossRef]
  12. C.-T. Lin, Y.-T. Huang, J.-Y. Huang, and H.-H. Lin, "Integrated planar waveguide concave gratings for high density WDM systems," in 2005 Optical Communications Systems and Networks (OCSN 2005), pp. 98-102 (Banff, Alberta, Canada, 2005).
  13. M. C. Hutley, Diffraction Gratings (Academic Press, London, 1982).
  14. C.-T. Lin, "A Study on Design and Fabrication of Micro Concave Grating," Master’s thesis, Institute of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (2002).
  15. H. Kogelnik, "Theory of OpticalWaveguides," in Guided-Wave Optoelectronics, T. Tamir, ed., (Springer-Verlag, Berlin, Germany, 1990) Chap. 2.
  16. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited