OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6116–6122

Coherent anti-Stokes Raman scattering microscopy using a single-pass picosecond supercontinuum-seeded optical parametric amplifier

Chao-Yu Chung, Yen-Yin Lin, Kuo-Yu Wu, Wan-Yu Tai, Shi-Wei Chu, Yao-Chang Lee, Yeukuang Hwu, and Yin-Yu Lee  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 6116-6122 (2010)
http://dx.doi.org/10.1364/OE.18.006116


View Full Text Article

Enhanced HTML    Acrobat PDF (701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have demonstrated coherent anti-Stokes Raman scattering (CARS) microscopy with a single-pass picosecond supercontinuum-seeded optical parametric amplifier (SCOPA). The SCOPA was pumped by a frequency-doubled picosecond passively mode-locked Nd:YVO4 laser, and was seeded by a supercontinuum light source. Compared with the conventional experimental setups of CARS microscopy, our exposition is substantially simpler because the pump and Stokes lasers are overlapped in the SCOPA automatically and thus steered into a microscope coherently. The feasibility of this novel light source to CARS imaging was illustrated by acquiring the fundamental and overtone CARS images of the aromatic C-H stretching mode of polystyrene beads and an image of the pharynx of a C. elegans of the aliphatic C-H stretching mode.

© 2010 OSA

OCIS Codes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Spectroscopy

History
Original Manuscript: January 6, 2010
Revised Manuscript: February 22, 2010
Manuscript Accepted: March 2, 2010
Published: March 11, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Chao-Yu Chung, Yen-Yin Lin, Kuo-Yu Wu, Wan-Yu Tai, Shi-Wei Chu, Yao-Chang Lee, Yeukuang Hwu, and Yin-Yu Lee, "Coherent anti-Stokes Raman scattering microscopy using a single-pass picosecond supercontinuum-seeded optical parametric amplifier," Opt. Express 18, 6116-6122 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6116


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti- Stokes scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  3. T. T. Le, I. M. Langohr, M. J. Locker, M. Sturek, and J.-X. Cheng, “Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy,” J. Biomed. Opt. 12(5), 054007 (2007). [CrossRef] [PubMed]
  4. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  5. M. Oheim, D. J. Michael, M. Geisbauer, D. Madsen, and R. H. Chow, “Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches,” Adv. Drug Deliv. Rev. 58(7), 788–808 (2006). [CrossRef] [PubMed]
  6. X. Nan, E. O. Potma, and X. S. Xie, “Nonpertubative chemical imaging of organelle transport in living cells with coherent anti-Stokes scattering microscopy,” Biophys. J. 91(2), 728–735 (2006). [CrossRef] [PubMed]
  7. J.-W. Jhan, W.-T. Chang, H.-C. Chen, M. F. Wu, Y. T. Lee, C. H. Chen, and I. Liau, “Integrated multiple multi-photon imaging and Raman spectroscopy for characterizing structure-constituent correlation of tissues,” Opt. Express 16(21), 16431–16441 (2008). [CrossRef] [PubMed]
  8. Y.-M. Wu, H.-C. Chen, W.-T. Chang, J.-W. Jhan, H.-L. Lin, and I. Liau, “Quantitative assessment of hepatic fat of intact liver tissues with coherent anti-stokes Raman scattering microscopy,” Anal. Chem. 81(4), 1496–1504 (2009). [CrossRef] [PubMed]
  9. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett. 27(13), 1168–1170 (2002). [CrossRef]
  10. G. I. Petrov and V. V. Yakovlev, “Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy,” Opt. Express 13(4), 1299–1306 (2005). [CrossRef] [PubMed]
  11. R. Arora, G. I. Petrov, and V. V. Yakovlev, “Analytical capabilities of coherent anti-Stokes Raman scattering microspectroscopy,” J. Mod. Opt. 55(19), 3237–3254 (2008). [CrossRef] [PubMed]
  12. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Express 33, 923–925 (2008).
  13. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004). [CrossRef] [PubMed]
  14. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B 22(9), 1934–1938 (2005). [CrossRef]
  15. H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm-1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005). [CrossRef]
  16. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006). [CrossRef] [PubMed]
  17. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, “All-fiber CARS microscopy of live cells,” Opt. Express 17(23), 20700–20706 (2009). [CrossRef] [PubMed]
  18. M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89(25), 251116 (2006). [CrossRef]
  19. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006). [CrossRef] [PubMed]
  20. I. Rimke, C. L. Evans, E. Büttner, and X. S. Xie, “A new, easy to use light source for CARS microscopy based on an optical parametric oscillator,” Proc. SPIE 6630, 66300 (2007). [CrossRef]
  21. A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, “Adaptive optics for enhanced signal in CARS microscopy,” Opt. Express 15(26), 18209–18219 (2007). [CrossRef] [PubMed]
  22. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, “High-power picosecond fiber source for coherent Raman microscopy,” Opt. Lett. 34(13), 2051–2053 (2009). [CrossRef] [PubMed]
  23. G. Krauss, T. Hanke, A. Sell, D. Träutlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34(18), 2847–2849 (2009). [CrossRef] [PubMed]
  24. Y.-W. Tseng, Y.-Y. Lin, C.-H. Huang, J.-M. Liu, H.-C. Chui, H.-L. Liu, J. M. Stone, J. C. Knight, and S.-W. Chu, “Broadband tunable optical parametric amplification from a single 50 MHz ultrafast fiber laser,” Opt. Express 17, 7305–7309 (2009).
  25. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008). [CrossRef]
  26. E. W. Crandall and A. N. Jagtap, “The near-infrared spectra of polymers,” J. Appl. Polym. Sci. 21(2), 449–454 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited