OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6156–6163

Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

Weiqi Xue, Salvador Sales, José Capmany, and Jesper Mørk  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 6156-6163 (2010)
http://dx.doi.org/10.1364/OE.18.006156


View Full Text Article

Acrobat PDF (846 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

© 2010 OSA

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 12, 2010
Revised Manuscript: February 22, 2010
Manuscript Accepted: March 9, 2010
Published: March 11, 2010

Citation
Weiqi Xue, Salvador Sales, José Capmany, and Jesper Mørk, "Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers," Opt. Express 18, 6156-6163 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6156


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90(11), 113903 (2003). [CrossRef]
  3. C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum-well and quantum-dot devices,” J. Lightwave Technol. 24(12), 4642–4654 (2006). [CrossRef]
  4. J. Mørk, F. Öhman, M. van der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: controlling the speed of light using semiconductor waveguides,” Laser Photon Rev. 3(1-2), 30–44 (2009). [CrossRef]
  5. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef]
  7. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005). [CrossRef]
  8. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005). [CrossRef]
  9. L. Thévenaz, “Slow and fast light in optical fibers,” Nat. Photonics 2(8), 474–481 (2008). [CrossRef]
  10. J. T. Mok and B. J. Eggleton, “Photonics: expect more delays,” Nature 433(7028), 811–812 (2005). [CrossRef]
  11. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008). [CrossRef]
  12. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, “Slow light in a semiconductor waveguide at gigahertz frequencies,” Opt. Express 13(20), 8136–8145 (2005). [CrossRef]
  13. S. Chang, P. K. Kondratko, H. Su, and S. L. Chuang, “Slow light based on coherent population oscillation in quantum dots at room temperature,” IEEE J. Quantum Electron. 43(2), 196–205 (2007). [CrossRef]
  14. A. V. Uskov, F. G. Sedgwick, and C. J. Chang-Hasnain, “Delay limit of slow light in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(6), 731–733 (2006). [CrossRef]
  15. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008). [CrossRef]
  16. J. Capmany and D. Novak, “Microwave photonics combines two words,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  17. R. Jakoby, P. Scheele, S. Müller, and C. Weil, “Nonlinear dielectrics for tunable microwave components.” 15th International Conference on Microwaves, Radar and Wireless Communications, MIKON-2004, 2, 369–378 (2004).
  18. C. Weil, S. Müller, P. Scheele, Y. Kryvoshapka, G. Lüssem, P. Best, and R. Jakoby, “Ferroelectric- and liquid Crystal tunable microwave phase-shifters,” 33rd European Microwave Conference, Munich, Germany, 3, 1431–1434, (2003).
  19. P. Wang, C. Y. Tan, Y. G. Ma, W. N. Cheng, and C. K. Ong, “Planar tunable high-temperature superconductor microwave broadband phase shifter with patterned ferroelectric thin film,” Supercond. Sci. Technol. 20(1), 77–80 (2007). [CrossRef]
  20. N. S. Barker and G. M. Reveis, “Distributed MEMS true-time delay phase shifters and wide-band switches,” IEEE Trans. Microw. Theory Tech. 46(11), 1881–1890 (1998). [CrossRef]
  21. G. McFeetors and M. Okoniewski, “Distributed MEMS analog phase shifter with enhanced tuning,” IEEE Microw.Wirel. Comp. Lett. 16(1), 34–36 (2006). [CrossRef]
  22. T. Kim, D. Woo, C. Lee, and K. W. Kim, “A new 40 GHz analog phase shifter using phase-locked loops,” 35th European Microwave Conference, Paris, France, 2, (2005).
  23. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996). [CrossRef]
  24. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical Processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005). [CrossRef]
  25. K. Matsumoto, M. Izutsu, and T. Sueta, “Microwave phase shifter using optical waveguide structure,” J. Lightwave Technol. 9(11), 1523–1527 (1991). [CrossRef]
  26. Y. Yu and J. P. Yao, “A tunable microwave photonic filter with a complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472–1474 (2007). [CrossRef]
  27. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009). [CrossRef]
  28. W. Xue, Y. Chen, F. Öhman, and J. Mørk, “The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers,” Opt. Express 17(3), 1404–1413 (2009). [CrossRef]
  29. M. Nielsen and J. Mørk, “Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering,” J. Opt. Soc. Am. B 21, 1606–1619 (2004). [CrossRef]
  30. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore, and B. Thedrez, “Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser,” Electron. Lett. 41(6), 323–324 (2005). [CrossRef]
  31. W. Xue, S. Sales, J. Capmany and J. Mørk, “Experimental Demonstration of 360° Tunable RF Phase Shift using Slow and Fast Light Effects,” in Slow and Fast Light, OSA Technical Digest (CD) (Optical Society of America, 2009), paper SMB6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited