OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6172–6182

Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

Minhao Pu, Liu Liu, Weiqi Xue, Yunhong Ding, Haiyan Ou, Kresten Yvind, and Jørn M. Hvam  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 6172-6182 (2010)
http://dx.doi.org/10.1364/OE.18.006172


View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator. A quasi-linear phase shift of 360° with RF-power variation lower than 2dB and a continuous 270° phase shift without RF-power variation at a microwave frequency of 40GHz are also demonstrated.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Integrated Optics

History
Original Manuscript: January 25, 2010
Revised Manuscript: February 26, 2010
Manuscript Accepted: March 3, 2010
Published: March 11, 2010

Citation
Minhao Pu, Liu Liu, Weiqi Xue, Yunhong Ding, Haiyan Ou, Kresten Yvind, and Jørn M. Hvam, "Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator," Opt. Express 18, 6172-6182 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6172


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  2. S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and J. P. Huignard, “Optical signal processing in radar systems,” IEEE Trans. Microw. Theory Tech. 54(2), 847–853 (2006). [CrossRef]
  3. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005). [CrossRef]
  4. M. Fisher and S. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser,” IEEE Photon. Technol. Lett. 18(16), 1714–1716 (2006). [CrossRef]
  5. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006). [CrossRef]
  6. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. Lett. 34(7), 929–931 (2009). [CrossRef] [PubMed]
  7. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008). [CrossRef] [PubMed]
  8. M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13(18), 7145–7159 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7145 . [CrossRef] [PubMed]
  9. L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009). [CrossRef] [PubMed]
  10. Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A Tunable Broadband Photonic RF Phase Shifter Based on a Silicon Microring Resonator,” IEEE Photon. Technol. Lett. 21(1), 60–62 (2009). [CrossRef]
  11. M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable Microwave Phase Shifter Based on Silicon-on-Insulator Microring Resonator,” submitted toIEEE Photon. Technol. Lett.
  12. J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006). [CrossRef]
  13. W. Xue, S. Sales, J. Mork, and J. Capmany, “Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects,” IEEE Photon. Technol. Lett. 21(3), 167–169 (2009). [CrossRef]
  14. J. Heebner, A. Vincent Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron. 40(6), 726–730 (2004). [CrossRef]
  15. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si wire waveguides to single mode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  16. M. Pu, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Low Insertion Loss SOI Microring Resonator Integrated with Nano-Taper Couplers,” The Conference on Frontiers in Optics (FiO) 2009, FThE1 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited