OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6183–6190

Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold

Guichuan Xing, Jiang Jiang, Jackie Y. Ying, and Wei Ji  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6183-6190 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the observation of optical limiting in Fe3O4-Ag nanocomposites in solution. With these nanocomposites, we demonstrate that broad temporal optical limiting can be accomplished with low limiting threshold. Due to the presence of Ag nanoparticles, nonlinear scattering gives rise to enhanced optical limiting responses to 532-nm nanosecond laser pulses, with a limiting threshold comparable to carbon nanotubes. As exposed to 780-nm femtosecond laser pulses, the largest value (~10−44 cm4s photon−1 or 106 GM) for two-photon absorption cross-sections reported to date results in superior limiting responses with a limiting threshold as low as 0.04 J/cm2 or 100 GW/cm2 for Fe3O4–Ag (7nm) solution in 1 cm quartz cell. The limiting threshold can be further reduced by increasing Ag particle size through plasmon enhancement or taking advantage of self-defocusing.

© 2010 OSA

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: January 20, 2010
Revised Manuscript: March 4, 2010
Manuscript Accepted: March 6, 2010
Published: March 11, 2010

Guichuan Xing, Jiang Jiang, Jackie Y. Ying, and Wei Ji, "Fe3O4-Ag nanocomposites for optical limiting:
broad temporal response and low threshold," Opt. Express 18, 6183-6190 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356(6366), 225–226 (1992). [CrossRef]
  2. J. W. Perry, K. Mansour, I. Y. S. Lee, X. L. Wu, P. V. Bedworth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273(5281), 1533–1536 (1996). [CrossRef]
  3. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73(25), 3632 (1998). [CrossRef]
  4. P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, and K. L. Tan, “Electronic structure and optical limiting behavior of carbon nanotubes,” Phys. Rev. Lett. 82(12), 2548–2551 (1999). [CrossRef]
  5. N. Izard, P. Billaud, D. Riehl, E. Anglaret, C. Mioskowski, and E. Anglaret, “Influence of structure on the optical limiting properties of nanotubes,” Opt. Lett. 30(12), 1509–1511 (2005). [CrossRef] [PubMed]
  6. Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103(1), 77–82 (1999). [CrossRef]
  7. C. Liu, X. Wang, Q. Gong, K. Tang, X. Jin, H. Yan, and P. Cui, “Nanosecond optical limiting property of a novel octanuclear silver cluster complex containing arylselenolate ligands,” Adv. Mater. 13(22), 1687–1690 (2001). [CrossRef]
  8. H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006). [CrossRef]
  9. G. S. He, K. T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007). [CrossRef] [PubMed]
  10. G. S. He, L. S. Tan, Q. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108(4), 1245–1330 (2008). [CrossRef] [PubMed]
  11. M. P. Joshi, J. Swiatkiewicz, F. M. Xu, P. N. Prasad, B. A. Reinhardt, and R. Kannan, “Energy transfer coupling of two-photon absorption and reverse saturable absorption for enhanced optical power limiting,” Opt. Lett. 23(22), 1742–1744 (1998). [CrossRef]
  12. S. Webster, M. Reyes-Reyes, X. Pedron, R. López-Sandoval, M. Terrones, and D. L. Carroll, “Enhanced nonlinear transmittance by complementary nonlinear mechanisms: A reverse-saturable absorbing dye blended with nonlinear-scattering carbon nanotubes,” Adv. Mater. 17(10), 1239–1243 (2005). [CrossRef]
  13. Z. B. Liu, J. G. Tian, Z. Guo, D. M. Ren, F. Du, J. Y. Zheng, and Y. S. Chen, “Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes,” Adv. Mater. 20(3), 511–515 (2008). [CrossRef]
  14. S. S. Nair, J. Thomas, C. S. Suchand Sandeep, M. R. Anantharaman, and R. Philip, “An optical limiter based on ferrofluids,” Appl. Phys. Lett. 92(17), 171908 (2008). [CrossRef]
  15. M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, and M. Miya, “Large third-order optical nonlinearities in transition-metal oxides,” Nature 374(6523), 625–627 (1995). [CrossRef]
  16. D. Soga, S. Alves, A. Campos, F. A. Tourinho, J. Depeyrot, and A. M. F. Neto, “Nonlinear optical properties of ionic magnetic colloids in the femto- and millisecond time scales: Change from convergent-to-divergent lens-type behaviors,” J. Opt. Soc. Am. B 24(1), 49–55 (2007). [CrossRef]
  17. X. B. Feng and W. Ji, “Shape-dependent two-photon absorption in semiconductor nanocrystals,” Opt. Express 17(15), 13140–13150 (2009). [CrossRef] [PubMed]
  18. C. P. Singh, K. S. Bindra, G. M. Bhalerao, and S. M. Oak, “Investigation of optical limiting in iron oxide nanoparticles,” Opt. Express 16(12), 8440–8450 (2008). [CrossRef] [PubMed]
  19. H. Gu, Z. Yang, J. Gao, C. K. Chang, and B. Xu, “Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules,” J. Am. Chem. Soc. 127(1), 34–35 (2005). [CrossRef] [PubMed]
  20. H. Zeng and S. Sun, “Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles,” Adv. Funct. Mater. 18(3), 391–400 (2008). [CrossRef]
  21. P. Gong, H. Li, X. He, K. Wang, J. Hu, W. Tan, S. Zhang, and X. Yang, “Preparation and antibacterial activity of Fe3O4@Ag nanoparticles,” Nanotechnology 18(28), 285604 (2007). [CrossRef]
  22. N. R. Jana, Y. Chen, and X. Peng, “Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach,” Chem. Mater. 16(20), 3931–3935 (2004). [CrossRef]
  23. J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon, “Ultra-large-scale syntheses of monodisperse nanocrystals,” Nat. Mater. 3(12), 891–895 (2004). [CrossRef] [PubMed]
  24. M. V. Kovalenko, M. I. Bodnarchuk, R. T. Lechner, G. Hesser, F. Schäffler, and W. Heiss, “Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide,” J. Am. Chem. Soc. 129(20), 6352–6353 (2007). [CrossRef] [PubMed]
  25. J. Jiang, H. W. Gu, H. L. Shao, E. Devlin, G. C. Papaefthymiou, and J. Y. Ying, “Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation,” Adv. Mater. 20(23), 4403 (2008). [CrossRef]
  26. Y. P. He, Y. M. Miao, C. R. Li, S. Q. Wang, L. Cao, S. S. Xie, G. Z. Yang, B. S. Zou, and C. Burda, “Size and structure effect on optical transitions of iron oxide nanocrystals,” Phys. Rev. B 71(12), 125411 (2005). [CrossRef]
  27. C. Voisin, N. Del Fatti, D. Christofilos, and F. Vallée, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” J. Phys. Chem. B 105(12), 2264–2280 (2001). [CrossRef]
  28. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. B 20(6), 1227–1232 (2003). [CrossRef]
  29. N. J. Cherepy, D. B. Liston, J. A. Lovejoy, H. Deng, and J. Z. Zhang, “Ultrafast studies of photoexcited electron dynamics in γ- and α-Fe2O3 semiconductor nanoparticles,” J. Phys. Chem. B 102(5), 770–776 (1998). [CrossRef]
  30. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). [CrossRef]
  31. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300(5624), 1434–1436 (2003). [CrossRef] [PubMed]
  32. Y. L. Qu, W. Ji, Y. G. Zheng, and J. Y. Ying, “Auger recombination and intraband absorption of two-photon-excited carriers in colloidal CdSe quantum dots,” Appl. Phys. Lett. 90(13), 133112 (2007). [CrossRef]
  33. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, “Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots,” Phys. Rev. B 75(7), 075325 (2007). [CrossRef]
  34. B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: Theory and experiment,” Appl. Phys. Lett. 92(9), 091118 (2008). [CrossRef]
  35. M. S. Liao, J. D. Watts, and M. J. Huang, “Effects of peripheral substituents and axial ligands on the electronic structure and properties of cobalt porphyrins,” J. Phys. Chem. A 109(51), 11996–12005 (2005). [CrossRef] [PubMed]
  36. I. Cohanoschi, S. Yao, K. D. Belfield, and F. E. Hernandez, “Effect of the concentration of organic dyes on their surface plasmon enhanced two-photon absorption cross section using activated Au nanoparticles,” J. Appl. Phys. 101(8), 086112 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited