OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6191–6204

Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure

Asanka Pannipitiya, Ivan D. Rukhlenko, Malin Premaratne, Haroldo T. Hattori, and Govind P. Agrawal  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 6191-6204 (2010)
http://dx.doi.org/10.1364/OE.18.006191


View Full Text Article

Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an improved analytical model describing transmittance of a metal-dielectric-metal (MDM) waveguide coupled to an arbitrary number of stubs. The model is built on the well-known analogy between MDM waveguides and microwave transmission lines. This analogy allows one to establish equivalent networks for different MDM-waveguide geometries and to calculate their optical transmission spectra using standard analytical tools of transmission-line theory. A substantial advantage of our model compared to earlier works is that it precisely incorporates the dissipation of surface plasmon polaritons resulting from ohmic losses inside any metal at optical frequencies. We derive analytical expressions for transmittance of MDM waveguides coupled to single and double stubs as well as to N identical stubs with a periodic arrangement. We show that certain phase-matching conditions must be satisfied to provide opt al filtering characteristics for such waveguides. To check the accuracy of our model, its results are compared with numerical data obtained from the full-blown finite-difference time-domain simulations. Close agreement between the two suggests that our analytical model is suitable for rapid design optimization of MDM-waveguide-based compact photonic devices.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 5, 2010
Revised Manuscript: February 23, 2010
Manuscript Accepted: March 8, 2010
Published: March 11, 2010

Citation
Asanka Pannipitiya, Ivan D. Rukhlenko, Malin Premaratne, Haroldo T. Hattori, and Govind P. Agrawal, "Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure," Opt. Express 18, 6191-6204 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6191


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef]
  2. W. L. Barnes, "Surface plasmon-polariton length scales: A route to sub-wavelength optics," J. Opt. A: Pure Appl. Opt. 8, S87-S93 (2006). [CrossRef]
  3. S. A. Maier, P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B 67, 205402 (2003). [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature 2, 229-232 (2003). [CrossRef]
  5. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125409 (2004). [CrossRef]
  6. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, "Long-range surface plasmon polariton nanowire waveguides for device applications," Opt. Express 14, 314-319 (2006). [CrossRef]
  7. V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, "Resonant light interaction with plasmonic nanowire systems," J. Opt. A: Pure Appl. Opt. 7, S32-S37 (2005). [CrossRef]
  8. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef]
  9. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys.  98, 011101 (2005). [CrossRef]
  10. G. Veronis and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightwave Technol. 25, 2511-2521 (2007). [CrossRef]
  11. F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74, 205419 (2006). [CrossRef]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett.  95, 046802 (2005). [CrossRef]
  13. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett.  87, 061106 (2005). [CrossRef]
  14. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett.  87, 131102 (2005). [CrossRef]
  15. T. Lee and S. Gray, "Subwavelength light bending by metal slit structures," Opt. Express 13, 9652-9659 (2005). [CrossRef]
  16. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Opt. Express 13, 10795-10800 (2005). [CrossRef]
  17. G. Veronis and S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Express 15, 1211-1221 (2007). [CrossRef]
  18. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, "Nanoplasmonic couplers and splitters," Opt. Express 17, 19033-19040 (2009). [CrossRef]
  19. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  20. B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991). [CrossRef]
  21. G. Veronis and S. Fan, "Subwavelength plasmonic waveguide structures based on slots in thin metal films," Proc. SPIE 6123, 612308(1-10) (2006).
  22. X. Lin and X. Huang, "Tooth-shaped plasmonic waveguide filter with nanometric sizes," Opt. Lett. 33, 2874-2876 (2008). [CrossRef]
  23. J. Tao, X. Huang, X. Lin, Q. Zhang, and X. Jin, "A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure," Opt. Express 17, 13989-13994 (2009). [CrossRef]
  24. X. Lin and X. Huang, "Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter," J. Opt. Soc. Am. B 26, 1263-1268 (2009). [CrossRef]
  25. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, "Characteristics of gap plasmon waveguide with stub structures," Opt. Express 16, 16314-16325 (2008). [CrossRef]
  26. J. Tao, X. G. Huang, J. Chen, Q. Zhang, and X. Jin, "Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters," J. Opt. Soc. Am. B 27, 323-327 (2010). [CrossRef]
  27. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, "Surface plasmon reflector based on serial stub structure," Opt. Express 17, 20134-20139 (2009). [CrossRef]
  28. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, "Transmission line and equivalent circuit models for plasmonic waveguide components," IEEE J. Sel. Top. Quantum Electron. 14, 1462-1472 (2008). [CrossRef]
  29. G. Veronis, S. E. Kocabas, D. A. B. Miller, and S. Fan, "Modeling of plasmonic waveguide components and networks," J. Comput. Theor. Nanosci. 6, 1808-1826 (2009). [CrossRef]
  30. P. A. Rizzi, Microwave Engineering: Passive Circuits (Prentice-Hall, New Jersey, 1988).
  31. S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics, 3rd ed., (Wiley, New York, 1994).
  32. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York, 1998).
  33. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, 2007).
  34. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chipscale propagation with subwavelength-scale localization,"  Phys. Rev. B 73, 035407 (2006).
  35. K. Y. Kim, Y. K. Cho, H.-S. Tae, and J.-H. Lee, "Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics," Opt. Express 14, 320-330 (2006). [CrossRef]
  36. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for verticalcavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  37. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  38. K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics, 2nd ed. (Springer, Berlin, 2008).
  39. M. A. Parker, Physics of Optoelectronics (CRC Press, Florida, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited