OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6211–6219

Optical injection modulation of quantum-dash semiconductor lasers by intra-cavity stimulated Raman scattering

C. Chen, G. Ding, B. S. Ooi, L. F. Lester, A. Helmy, T. L. Koch, and J. C. M. Hwang  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6211-6219 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the optical injection modulation of semiconductor lasers by intra-cavity stimulated Raman scattering. This mechanism manifests itself as sharply enhanced modulation bandwidth in InAs/InGaAlAs/InP quantum-dash lasers when the injected photons are 33 ± 3 meV more energetic than the lasing photons. Raman scattering measurements on the quantum-dash structure and rate equation models strongly support direct gain modulation by stimulated Raman scattering. We believe this new bandwidth enhancement mechanism may have important applications in optical communication and signal processing.

© 2010 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.5650) Nonlinear optics : Raman effect
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 4, 2010
Revised Manuscript: February 25, 2010
Manuscript Accepted: March 4, 2010
Published: March 12, 2010

C. Chen, G. Ding, B. S. Ooi, L. F. Lester, A. Helmy, T. L. Koch, and J. C. M. Hwang, "Optical injection modulation of quantum-dash semiconductor lasers by intra-cavity stimulated Raman scattering," Opt. Express 18, 6211-6219 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, L. F. Lester, and K. J. Malloy, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001). [CrossRef]
  2. D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low-threshold current density InAs quantum dash lasers on InP (100) grown by molecular beam epitaxy,” Electron. Lett. 45(1), 50–51 (2009). [CrossRef]
  3. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002). [CrossRef]
  4. B. S. Ooi, H. S. Djie, Y. Wang, C. L. Tan, J. C. M. Hwang, X. M. Fang, J. M. Fastenau, A. W. K. Liu, G. T. Dang, and W. H. Chang, “Quantum dashes on InP substrate for broadband emitter applications,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1230–1238 (2008). [CrossRef]
  5. S. Azouigui, B. Dagens, F. Lelarge, J. G. Provost, D. Make, O. Le Gouezigou, A. Accard, A. Martinez, K. Merghem, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, Z. Qin, and A. Ramdane, “Optical Feedback Tolerance of Quantum-Dot- and Quantum-Dash-Based Semiconductor Lasers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 15, 764–773 (2009). [CrossRef]
  6. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent Advances on InAs/InP Quantum Dash Based Semiconductor Lasers and Optical Amplifiers Operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]
  7. B. Dagens, D. Make, F. Lelarge, B. Rousseau, M. Calligaro, M. Carbonnelle, F. Pommereau, A. Accard, F. Poingt, L. Le Gouezigou, C. Dernazaretian, O. Le Gouezigou, J. G. Provost, F. van Dijk, P. Resneau, M. Krakowski, and G. H. Duan, “High Bandwidth Operation of Directly Modulated Laser Based on Quantum-Dash InAs-InP Material at 1.55 μm,” IEEE Photon. Technol. Lett. 20(11), 903–905 (2008). [CrossRef]
  8. Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65-μm InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42, 1224–1232 (2006). [CrossRef]
  9. H. S. Djie, C. L. Tan, B. S. Ooi, J. C. M. Hwang, X.-M. Fang, Y. Wu, J. M. Fastenau, W. K. Liu, G. T. Dang, and W. H. Chang, “Ultra-broad stimulated emission from quantum-dash laser,” Appl. Phys. Lett. 91(11), 111116 (2007). [CrossRef]
  10. B. S. Ooi, T. K. Ong, and O. Gunawan, “Multiple-wavelength integration in InGaAs–InGaAsP structures using pulsed laser irradiation-induced quantum-well intermixing,” IEEE J. Quantum Electron. 40(5), 481–490 (2004). [CrossRef]
  11. N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the Injection-Locked Behavior of a Quantum Dash Semiconductor Laser,” IEEE J. Sel. Top. Quantum Electron. 5, 563–571 (2009).
  12. C. Chen, S. Halder, B. S. Ooi, and J. C. M. Hwang, “Intrinsic response of quantum dash lasers under optical modulation,” Proc. IEEE Lasers Electro-optical Soc. Annual Meet., 471–472 (2008).
  13. C. B. Su, J. Eom, C. H. Lange, C. B. Kim, R. B. Lauer, W. C. Rideout, and J. S. Lacourse, “Characterization of the dynamics of semiconductor-lasers using optical modulation,” IEEE J. Quantum Electron. 28(1), 118–127 (1992). [CrossRef]
  14. T. Keating, X. Jin, S. L. Chuang, and K. Hess, “Temperature dependence of electrical and optical modulation responses of quantum-well lasers,” IEEE J. Quantum Electron. 35(10), 1526–1534 (1999). [CrossRef]
  15. L. Sirleto, M. A. Ferrara, I. Rendina, S. N. Basu, J. Warga, R. Li, and L. D. Negro, “Enhanced stimulated Raman scattering in silicon nanocrystals embedded in silicon-rich nitride/silicon superlattice structures,” Appl. Phys. Lett. 93(25), 251104 (2008). [CrossRef]
  16. J. Hu, B. S. Marks, and C. R. Menyuk, “Flat-gain fiber Raman amplifiers using equally spaced pumps,” J. Lightwave Technol. 22(6), 1519–1522 (2004). [CrossRef]
  17. C. Chen, Y. Wang, C. L. Tan, H. S. Djie, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “Effects of Intermixing on Gain and Alpha Factors of Quantum-Dash Lasers,” IEEE Photon. Technol. Lett. 20(19), 1654–1656 (2008). [CrossRef]
  18. T. Tanabe, K. Suto, T. Saito, T. Kimura, Y. Oyama, and J. Nishizawa, “Characteristics of time-gated Raman amplification in GaP–AlGaP semiconductor waveguides,” Appl. Phys. Lett. 93, 43–45 (2003).
  19. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11(15), 1731–1739 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited