OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6262–6269

Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser

Fangfang Luo, Bin Qian, Geng Lin, Jian Xu, Yang Liao, Juan Song, Haiyi Sun, Bin Zhu, Jianrong Qiu, Quanzhong Zhao, and Zhizhan Xu  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6262-6269 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (378 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The redistribution of elements in a multicomponent oxyfluoride glass is induced by a 250 kHz femtosecond laser. Elemental distribution in the cross section of the modified region along the laser propagation axis is analyzed by an electron microprobe analyzer. The results indicate that the relative concentrations of network formers of the glass are higher in the central area of the modified region and lower in the periphery of the modified region compared with the unirradiated areas. However, the relative concentrations of network modifiers are as opposed to that of network formers. Fluorescence spectra confirm that the distribution of fluorescence intensity of Yb3+ in the modified region is consistent with that of its concentration. The effects of spherical aberration of the incident beam on the elemental redistribution are also discussed.

© 2010 OSA

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(350.3390) Other areas of optics : Laser materials processing

ToC Category:

Original Manuscript: December 21, 2009
Revised Manuscript: February 4, 2010
Manuscript Accepted: February 16, 2010
Published: March 12, 2010

Fangfang Luo, Bin Qian, Geng Lin, Jian Xu, Yang Liao, Juan Song, Haiyi Sun, Bin Zhu, Jianrong Qiu, Quanzhong Zhao, and Zhizhan Xu, "Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser," Opt. Express 18, 6262-6269 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008). [CrossRef]
  2. M. Ams, G. D. Marshall, P. Dekker, M. Dubov, V. K. Mezentsev, I. Bennion, and M. J. Withford, “Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics,” IEEE J. Sel. Quant. Electron. 14(5), 1370–1381 (2008). [CrossRef]
  3. C. T. Hebeisen, G. Sciaini, M. Harb, R. Ernstorfer, S. G. Kruglik, and R. J. D. Miller, “Direct visualization of charge distributions during femtosecond laser ablation of a Si (100) surface,” Phys. Rev. B 78(8), 081403 (2008). [CrossRef]
  4. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005). [CrossRef] [PubMed]
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996). [CrossRef] [PubMed]
  6. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001). [CrossRef]
  7. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001). [CrossRef]
  8. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725 (2001). [CrossRef]
  9. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008). [CrossRef] [PubMed]
  10. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13(12), 4708–4716 (2005). [CrossRef] [PubMed]
  11. W. J. Yang, C. Corbari, P. G. Kazansky, K. Sakaguchi, and I. C. Carvalho, “Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing,” Opt. Express 16(20), 16215–16226 (2008). [CrossRef] [PubMed]
  12. K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, and K. Hirao, “Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions,” Appl. Phys. Lett. 80(13), 2263–2265 (2002). [CrossRef]
  13. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, and B. Yu, “Direct writing three- dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser,” Appl. Phys. Lett. 90(18), 181109 (2007). [CrossRef]
  14. Y. Liu, B. Zhu, L. Wang, Y. Dai, H. Ma, and J. Qiu, “Femtosecond laser induced coordination transformation and migration of ions in sodium borate glasses,” Appl. Phys. Lett. 92, 121113/1–3 (2008). [CrossRef]
  15. S. Kanehira, K. Miura, and K. Hirao, “Ion exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett. 93(2), 023112 (2008). [CrossRef]
  16. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, and K. Hirao, “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett. 34(2), 136–138 (2009). [CrossRef] [PubMed]
  17. K. Miura, K. Hirao, Y. Shimotsuma, M. Sakakura, and S. Kanehira, “Formation of Si structure in glass with a femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 93(1), 183–188 (2008). [CrossRef]
  18. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003). [CrossRef]
  19. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberration,” J. Appl. Phys. 98(1), 013517 (2005). [CrossRef]
  20. N. Huot, R. Stoian, A. Mermillod-Blondin, C. Mauclair, and E. Audouard, “Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass,” Opt. Express 15(19), 12395–12408 (2007). [CrossRef] [PubMed]
  21. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express 16(8), 5481–5492 (2008). [CrossRef] [PubMed]
  22. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008). [CrossRef]
  23. S. Ye, B. Zhu, J. Chen, J. Luo, and J. Qiu, “Infrared quantum cutting in Tb3+,Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett. 92(14), 141112 (2008). [CrossRef]
  24. Y. Liu, M. Shimizu, X. Wang, B. Zhu, M. Sakakura, Y. Shimotsuma, J. Qiu, K. Miura, and K. Hirao, “Confocal Raman imaging of femtosecond laser induced microstructures in germanate glasses,” Chem. Phys. Lett. 477(1-3), 122–125 (2009). [CrossRef]
  25. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003). [CrossRef]
  26. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239(1-3), 91–95 (1998). [CrossRef]
  27. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002). [CrossRef] [PubMed]
  28. P. Török, P. Varga, and G. Nèmeth, “Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive indices,” J. Opt. Soc. Am. A 12(12), 2660–2671 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited