OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6270–6276

Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6270-6276 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.

© 2010 OSA

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: December 22, 2009
Revised Manuscript: February 9, 2010
Manuscript Accepted: February 22, 2010
Published: March 12, 2010

T. Vallaitis, R. Bonk, J. Guetlein, D. Hillerkuss, J. Li, R. Brenot, F. Lelarge, G. H. Duan, W. Freude, and J. Leuthold, "Quantum dot SOA input power
dynamic range improvement for
differential-phase encoded signals," Opt. Express 18, 6270-6276 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22(1), 63–70 (2004). [CrossRef]
  2. M. Sauer, and J. Hurley, “Experimental 43 Gb/s NRZ and DPSK performance comparison for systems with up to 8 concatenated SOAs,” in Lasers and Electro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006. Conference on, (2006), p. CThY2.
  3. E. Ciaramella, A. D’Errico, and V. Donzella, “Using semiconductor-optical amplifiers with constant Envelope WDM Signals,” IEEE J. Quantum Electron. 44(5), 403–409 (2008). [CrossRef]
  4. J. D. Downie, and J. Hurley, “Effects of dispersion on SOA nonlinear impairments with DPSK signals,” in Proc. of LEOS 2008, (2008), p. WX3.
  5. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16(1), 170–178 (2008). [CrossRef] [PubMed]
  6. R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a-3dB bandwidth of up to 120 nm in semi-cooled operation,” in Proc. Optical Fiber Communication Conference (OFC'08), (San Diego, CA, USA, 2008), p. OTuC1.
  7. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007). [CrossRef]
  8. R. Bonk, C. Meuer, T. Vallaitis, S. Sygletos, P. Vorreau, S. Ben-Ezra, S. Tsadka, A. R. Kovsh, I. L. Krestnikov, M. Laemmlin, D. Bimberg, W. Freude, and J. Leuthold, “Single and multiple channel operation dynamics of linear quantum-dot semiconductor optical amplifier,” in Proc. European Conference on Optical Communication,2008. ECOC 2008, (Brussels, Belgium, 2008), p. Th.1.C.2.
  9. H. A. Haus, “The noise figure of optical amplifiers,” IEEE Photon. Technol. Lett. 10(11), 1602–1604 (1998). [CrossRef]
  10. T. Briant, P. Grangier, R. Tualle-Brouri, A. Bellemain, R. Brenot, and B. Thedrez, “Accurate determination of the noise figure of polarization-dependent optical amplifiers: theory and experiment,” J. Lightwave Technol. 24(3), 1499–1503 (2006). [CrossRef]
  11. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55µm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007). [CrossRef]
  12. C. Dorrer and I. Kang, “Real-time implementation of linear spectrograms for the characterization of high bit-rate optical pulse trains,” IEEE Photon. Technol. Lett. 16(3), 858–860 (2004). [CrossRef]
  13. F. Ginovart, J. C. Simon, and I. Valiente, “Gain recovery dynamics in semiconductor optical amplifier,” Opt. Commun. 199(1-4), 111–115 (2001). [CrossRef]
  14. A. A. M. Saleh and I. M. I. Habbab, “Effects of semiconductor-optical-amplifier nonlinearity on the performance of high-speed intensity-modulation lightwave systems,” IEEE Trans. Commun. 38(6), 839–846 (1990). [CrossRef]
  15. K.-P. Ho, “The effect of interferometer phase error on direct-detection DPSK and DQPSK signals,” IEEE Photon. Technol. Lett. 16(1), 308–310 (2004). [CrossRef]
  16. H. Kim and P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol. 21(9), 1887–1891 (2003). [CrossRef]
  17. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006). [CrossRef]
  18. X. Wei and L. Zhang, “Analysis of the phase noise in saturated SOAs for DPSK applications,” IEEE J. Quantum Electron. 41(4), 554–561 (2005). [CrossRef]
  19. J. Wang, A. Maitra, C. G. Poulton, W. Freude, and J. Leuthold, “Temporal dynamics of the alpha factor in semiconductor optical amplifiers,” J. Lightwave Technol. 25(3), 891–900 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited