OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6288–6299

Full field detection in photoacoustic tomography

Robert Nuster, Gerhard Zangerl, Markus Haltmeier, and Günther Paltauf  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6288-6299 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1899 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Imaging the full acoustic field around an object by use of an optical phase contrast method is used to accelerate the data acquisition in photoacoustic tomography. Images obtained with a CCD-camera at a certain time show a projection of the instantaneous pressure field in a given direction. In this work a reconstruction method is presented to obtain the two-dimensional initial pressure distribution by back propagating the observed wave pattern in Radon space. Numerical simulations are used to prove the accuracy of the reconstruction algorithm and to demonstrate a method for correcting limited data artifacts. Finally, the overall performance is shown with experimentally obtained data.

© 2010 OSA

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 22, 2009
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 10, 2010
Published: March 12, 2010

Virtual Issues
Vol. 5, Iss. 7 Virtual Journal for Biomedical Optics

Robert Nuster, Gerhard Zangerl, Markus Haltmeier, and Günther Paltauf, "Full field detection in photoacoustic tomography," Opt. Express 18, 6288-6299 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Xu and L. V. Wang, “Photoacoustic Imaging in Biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006). [CrossRef]
  2. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser Optoacoustic Imaging System for Detection of Breast Cancer,” J. Biomed. Opt. 14(2), 024007 (2009). [CrossRef] [PubMed]
  3. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol. 54(4), 1035–1046 (2009). [CrossRef] [PubMed]
  4. P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000). [CrossRef]
  5. P. C. Beard and T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer,” Appl. Opt. 35(4), 663–675 (1996). [CrossRef] [PubMed]
  6. S. Ashkenazi, Y. Hou, S. Huang, T. Buma, and M. O'Donnell, “High Frequency Optoacoustic Transducers for Ultrasonic and Photoacoustic Imaging” (CRC Press, 2009).
  7. J. J. Niederhauser, M. Jaeger, and M. Frenz, “Real-Time Three-Dimensional Optoacoustic Imaging Using an Acoustic Lens System,” Appl. Phys. Lett. 85(5), 846–848 (2004). [CrossRef]
  8. J. J. Niederhauser, D. Frauchiger, H. P. Weber, and M. Frenz, “Real-Time Optoacoustic Imaging Using a Schlieren Transducer,” Appl. Phys. Lett. 81(4), 571–573 (2002). [CrossRef]
  9. B. Schneider and K. K. Shung, “Quantitative Analysis of Pulsed Ultrasonic Beam Patterns Using a Schlieren System,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(6), 1181–1186 (1996). [CrossRef]
  10. N. Kudo, H. Ouchi, K. Yamamoto, and H. Sekimizu, “A simple Schlieren system for visualizing a sound field of pulsed ultrasound,” J. Phys.: Conf. Ser. 1, 146–149 (2004). [CrossRef]
  11. C. I. Zanelli and S. M. Howard, “Schlieren metrology for high frequency medical ultrasound,” Ultrasonics 44(Suppl 1), e105–e107 (2006). [CrossRef] [PubMed]
  12. I. Núñez and J. A. Ferrari, “Bright versus dark schlieren imaging: quantitative analysis of quasi-sinusoidal phase objects,” Appl. Opt. 46(5), 725–729 (2007). [CrossRef] [PubMed]
  13. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).
  14. Th. Neumann and H. Ermert, “Schlieren visualization of ultrasonic wave fields with high spatial resolution,” Ultrasonics 44(Suppl 1), e1561–e1566 (2006). [CrossRef] [PubMed]
  15. E. K. Reichel and B. G. Zagar, “Phase contrast method for measuring ultrasonic fields,” IEEE Trans. Instrum. Meas. 55(4), 1356–1361 (2006). [CrossRef]
  16. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(9), 1577–1583 (2005). [CrossRef] [PubMed]
  17. M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, “Thermoacoustic tomography & the circular Radon transform: Exact inversion formula,” Math. Models Meth. Appl. Sci. 17(4), 635–655 (2007). [CrossRef]
  18. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007). [CrossRef] [PubMed]
  19. S. Helgason, The Radon Transform (Birkhäuser, Boston 1999).
  20. F. John, Partial Differential Equautions (Springer Verlag, New York 1982).
  21. A. C. Kak, and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York 1988).
  22. F. Natterer, The Mathematics of Computerized Tomography (SIAM Classics in Applied Mathematics, 2001).
  23. X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse Probl. 25(12), 123009 (2009). [CrossRef]
  24. M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20(5), 1663–1673 (2004). [CrossRef]
  25. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors,” Inverse Probl. 23(6), S81–S94 (2007). [CrossRef]
  26. G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54(11), 3303–3314 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited