OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6366–6381

A multipole-expansion based linear sampling method for solving inverse scattering problems

Krishna Agarwal, Xudong Chen, and Yu Zhong  »View Author Affiliations


Optics Express, Vol. 18, Issue 6, pp. 6366-6381 (2010)
http://dx.doi.org/10.1364/OE.18.006366


View Full Text Article

Enhanced HTML    Acrobat PDF (936 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Linear sampling method (LSM) is a qualitative method used to reconstruct the support of scatterers. This paper presents a modification of the LSM approach. The proposed method analyses the multipole expansion of the scattered field. Only monopole and dipole terms are used for the reconstruction of the scatterer support and all other higher order multipoles are truncated. It is shown that such modification performs better than the mathematical regularization typically used in LSM. The justification for truncation of higher order multipoles is presented. Various examples are presented to demonstrate the performance of the proposed method for dielectric as well as perfectly conducting scatterers in presence of significant amount of additive Gaussian noise.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(290.3200) Scattering : Inverse scattering
(290.5825) Scattering : Scattering theory

ToC Category:
Physical Optics

History
Original Manuscript: January 19, 2010
Manuscript Accepted: March 1, 2010
Published: March 12, 2010

Citation
Krishna Agarwal, Xudong Chen, and Yu Zhong, "A multipole-expansion based linear sampling method for solving inverse scattering problems," Opt. Express 18, 6366-6381 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6366


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Agarwal, and X. Chen, "Application of differential evolution in 2-dimensional electromagnetic inverse problems," in IEEE Congress on Evolutionary Computation, (2007), 4305-4312. [CrossRef]
  2. K. Agarwal, and X. Chen, "Applicability of MUSIC-Type Imaging in Two-Dimensional Electromagnetic Inverse Problems," IEEE Trans. Antenn. Propag. 56(10), 3217-3223 (2008). [CrossRef]
  3. Y. Zhong, and X. Chen, "MUSIC imaging and electromagnetic inverse scattering of multiple-scattering small anisotropic spheres," IEEE Trans. Antenn. Propag. 55(12), 3542-3549 (2007). [CrossRef]
  4. M. Brignone, G. Bozza, A. Randazzo, M. Piana, and M. Pastorino, "A Hybrid Approach to 3D Microwave Imaging by Using Linear Sampling and ACO," IEEE Trans. Antenn. Propag. 56(10), 3224-3232 (2008). [CrossRef]
  5. I. Catapano, L. Crocco, M. D'Urso, and T. Isernia, "On the effect of support estimation and of a new model in 2-D inverse scattering problems," IEEE Trans. Antenn. Propag. 55(6), 1895-1899 (2007). [CrossRef]
  6. X. Chen, and Y. Zhong, "A robust noniterative method for obtaining scattering strengths of multiply scattering point targets," J. Acoust. Soc. Am. 122(3), 1325-1327 (2007). [CrossRef] [PubMed]
  7. H. Ammari, E. Iakovleva, D. Lesselier, and G. Perrusson, "Music-type electromagnetic imaging of a collection of small three-dimensional inclusions," SIAM J. Sci. Comput. 29(2), 674-709 (2007). [CrossRef]
  8. X. Chen, and Y. Zhong, "MUSIC electromagnetic imaging with enhanced resolution for small inclusions," Inverse Probl. 25(1), 015008 (2009). [CrossRef]
  9. M. Fink, and C. Prada, "Acoustic time-reversal mirrors," Inverse Probl. 17(1), 201 (2001). [CrossRef]
  10. A. J. Devaney, "Time reversal imaging of obscured targets from multistatic data," IEEE Trans. Antenn. Propag. 53(5), 1600-1610 (2005). [CrossRef]
  11. T. Rao, and X. Chen, "Analysis of the time-reversal operator for a single cylinder under two-dimensional settings," J. Electromagn. Waves Appl. 20(15), 2153-2165 (2006). [CrossRef]
  12. K. Mayer, R. Marklein, K. J. Langenberg, and T. Kreutter, "Three-dimensional imaging system based on Fourier transform synthetic aperture focusing technique," Ultrasonics 28(4), 241-255 (1990). [CrossRef]
  13. C. K. Liao, M. L. Li, and P. C. Li, "Optoacoustic imaging with synthetic aperture focusing and coherence weighting," Opt. Lett. 29(21), 2506-2508 (2004). [CrossRef] [PubMed]
  14. T. Arens, and A. Kirsch, "The factorization method in inverse scattering from periodic structures," Inverse Probl. 19(5), 1195-1211 (2003). [CrossRef]
  15. A. Kirsch, "The factorization method for Maxwell's equations," Inverse Probl. 20(6), S117-S134 (2004). [CrossRef]
  16. A. Kirsch, "Characterization of the shape of a scattering obstacle using the spectral data of the far field operator," Inverse Probl. 14(6), 1489-1512 (1998). [CrossRef]
  17. A. Kirsch, and S. Ritter, "A linear sampling method for inverse scattering from an open arc," Inverse Probl. 16(1), 89-105 (2000). [CrossRef]
  18. D. Colton, J. Coyle, and P. Monk, "Recent developments in inverse acoustic scattering theory," SIAM Rev. 42(3), 369-414 (2000). [CrossRef]
  19. F. Cakoni, D. Colton, and H. Haddar, "The linear sampling method for anisotropic media," J. Comput. Appl. Math. 146(2), 285-299 (2002). [CrossRef]
  20. D. Colton, H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inverse Probl. 19(6), S105-S137 (2003). [CrossRef]
  21. D. Colton, and R. Kress, "Using fundamental solutions in inverse scattering," Inverse Probl. 22(3), R49-R66 (2006). [CrossRef]
  22. F. Cakoni, and D. Colton, Qualitative methods in inverse scattering theory: An introduction (Springer, Berlin, 2006).
  23. A. Kirsch, and N. Grinberg, The factorization method for inverse problems (Lecture series in mathematics and its applications, Oxford University Press, 2008).
  24. I. Catapano, L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antenn. Propag. 55(5), 1431-1436 (2007). [CrossRef]
  25. N. Shelton, and K. F. Warnick, "Behavior of the regularized sampling inverse scattering method at internal resonance frequencies," J. Electromagn. Waves Appl. 17(3), 487-488 (2003). [CrossRef]
  26. I. Catapano, L. Crocco, and T. Isernia, "Improved Sampling Methods for Shape Reconstruction of 3-D Buried Targets," IEEE Trans. Geosci. Rem. Sens. 46(10), 3265-3273 (2008). [CrossRef]
  27. D. L. Colton, and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd ed. (Springer, New York, 1998).
  28. M. Abramowitz, and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, 7th ed. (Dover Publications, New York, 1972).
  29. R. A. Horn, and C. R. Johnson, Matrix analysis (Cambridge University Press, Cambridge; New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited