OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6382–6389

Resonant characteristics of multimode interferometer coupled square ring semiconductor resonators

Kyung-Sook Hyun and Hee-Jong Moon  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6382-6389 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work reports the spectral characteristics of coupled square ring semiconductor resonators. For a single mode operation, the square ring cavities coupled with multimode interferometers (MMIs) are proposed and fabricated using the epitaxial layers of 1.55 μm center wavelength InGaAsP-InP multiple quantum wells. Resonant characteristics can be tailored by varying the parameters of the cavity size or the waveguide width. By using the MMI coupled square ring cavity, a stable single spectral lasing mode was obtained in various combinations of square cavities.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.5990) Integrated optics : Semiconductors
(140.4780) Lasers and laser optics : Optical resonators

ToC Category:
Integrated Optics

Original Manuscript: January 28, 2010
Revised Manuscript: March 3, 2010
Manuscript Accepted: March 4, 2010
Published: March 12, 2010

Kyung-Sook Hyun and Hee-Jong Moon, "Resonant characteristics of multimode interferometer coupled square ring semiconductor resonators," Opt. Express 18, 6382-6389 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Suzuki, Y. Kokubun, M. Nakazawa, T. Yamamoto, and S. T Chu,“Ultrashort optical pulse transmission characteristics of vertically coupled microring resonator add/drop filter,” J. Lightwave Technol. 19(2), 266–271 (2001). [CrossRef]
  2. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Perton, and R. A. Logan, “Whispering gallery mode micro disk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992). [CrossRef]
  3. T. Baba, “Photonics crystals and microdisk cavities based on GaInAsP-InP system,” IEEE J. Sel. Top. Quantum Electron. 3(3), 808–830 (1997). [CrossRef]
  4. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Multiple-channel silicon micro-resonator based filters for WDM applications,” Opt. Express 15(12), 7489–7498 (2007). [CrossRef] [PubMed]
  5. D. G. Rabus, Integrated Ring Resonators:The compendium, Springer series in optical sciences (Springer, 2007)
  6. K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “High-Q Vertically Coupled InP Microdisk Resonators,” IEEE Photon. Technol. Lett. 14(3), 331–333 (2002). [CrossRef]
  7. W. M. J. Green, R. K. Lee, G. A. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupoing control,” Opt. Express 13(5), 1651–1659 (2005). [CrossRef] [PubMed]
  8. Y. Huang, G. T. Paloczi, J. Scheuer, and A. Yariv, “Soft lithography replication of polymeric microring optical resonators,” Opt. Express 11(20), 2452–2458 (2003). [CrossRef] [PubMed]
  9. S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, “Tunable narrow linewidth all-buried heterostructure ring resonator filters using Vernier Effects,” IEEE Photon. Technol. Lett. 17(1), 106–108 (2005). [CrossRef]
  10. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25(5), 344–346 (2000). [CrossRef]
  11. D. G. Rabus and M. Hamacher, “MMI-Coupled Ring Resonators in GaInAsP-InP,” IEEE Photon. Technol. Lett. 13(8), 812–814 (2001). [CrossRef]
  12. B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring-resonator coupled lasers,” Appl. Phys. Lett. 79(22), 3561–3563 (2001). [CrossRef]
  13. R. Grover, T. A. Ibrahim, T. N. Ding, Y. Leng, L.-C. Kuo, S. Kanakaraju, K. Amarnath, L. C. Calhoun, and P.-T. Ho, “Laterally Coupled InP-Based single mode microracetrack notch filter,” IEEE Photon. Technol. Lett. 15(8), 1082–1084 (2003). [CrossRef]
  14. V. Van, P. P. Absil, J. V. Hryniewicz, P.-T. Ho, J. V. Hryniewicz, and P.-T Ho, “Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model,” J. Lightwave Technol. 19(11), 1734–1739 (2001). [CrossRef]
  15. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett. 25(4), 260–262 (2000). [CrossRef]
  16. S. Suzuki, Y. Kokubun, M. Nakazawa, R. Yamamoto, and S. T. Chu, and S. T. Chu, “Ultrashort Optical pulse transmission characteristics of vertically coupled microring resonator Add/Drop Filter,” J. Lightwave Technol. 19(2), 266 (2001). [CrossRef]
  17. A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode resonances in square-shaped optical microcavities,” Opt. Lett. 26(9), 632–634 (2001). [CrossRef]
  18. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999). [CrossRef]
  19. H.-J. Moon and K.-S. Hyun, “Selective lasing of guided modes from hollow square semiconductor Microcavities,” Jpn. J. Appl. Phys. 46(12), L274–L276 (2007). [CrossRef]
  20. H. Lu, C. Blaauw, and T. Makino, “Single-Mode operation over a wide temperature range in 1.3 mm InGaAsP/InP distributed feedback lasers,” J. Lightwave Technol. 14(5), 851–859 (1996). [CrossRef]
  21. M. Kondow, T. Kitatami, K. Nakahara, and T. Tanaka, “Temperature dependence of lasing wavelength in a GaInNAs laser diode,” IEEE Photon. Technol. Lett. 12(7), 777–779 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited