OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6390–6395

Low divergence Terahertz photonic-wire laser

Maria I. Amanti, Giacomo Scalari, Fabrizio Castellano, Mattias Beck, and Jerome Faist  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6390-6395 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Edge emitting, terahertz quantum cascade photonic-wire lasers, based on a third order Bragg grating are presented. Devices with a power consumption as low as 300mW, with a single frequency output power of more than 1.5mW are demonstrated. Their maximum operating temperature in continuous-wave mode operation is 110K and the emission is concentrated in a narrow beam (~30° divergence). Larger structure based on the same design show more than 10mW output power and more than 200mW/A slope efficiency at 10K continuous-wave operation.

© 2010 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 1, 2010
Revised Manuscript: February 17, 2010
Manuscript Accepted: February 20, 2010
Published: March 12, 2010

Maria I. Amanti, Giacomo Scalari, Fabrizio Castellano, Mattias Beck, and Jerome Faist, "Low divergence Terahertz photonic-wire laser," Opt. Express 18, 6390-6395 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si Photonic Wire Waveguide Devices,” Sel. Top. IEEE J. Quantum Electron. 12(6), 1371–1379 (2006). [CrossRef]
  2. A. Jugessur, J. Dou, J. Aitchison, R. D. L. Rue, and M. Gnan, “A Photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications,” Microelectron. Eng. 86(4-6), 1488–1490 (2009). [CrossRef]
  3. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic-wire laser,” Phys. Rev. Lett. 75(14), 2678–2681 (1995). [CrossRef] [PubMed]
  4. E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna model for wire lasers,” Phys. Rev. Lett. 96(17), 173904 (2006). [CrossRef] [PubMed]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  6. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007). [CrossRef] [PubMed]
  7. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Lin_eld, and G. A. Davies, “Electrically pumped photonic crystal terahertz semiconductor lasers controlled by boundary conditions,” Nature 457, 174–178 (2009). [CrossRef] [PubMed]
  8. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Graded photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett. 96(3), 031104 (2010). [CrossRef]
  9. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002). [CrossRef] [PubMed]
  10. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007). [CrossRef]
  11. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1-2), 45–66 (2009). [CrossRef]
  12. M. I. Amanti, G. Scalari, R. Terazzi, M. Fischer, M. Beck, J. Faist, A. Rudra, P. Gallo, and E. Kapon, “Bound-to-continuum terahertz quantum cascade laser with a single quantum well phonon extraction/injection stage,” N. J. Phys. 11(12), 125022b (2009). [CrossRef]
  13. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett. 80(17), 3060–3062 (2002). [CrossRef]
  14. B. S. Williams, S. Kumar, Q. Huand, and J. L. Reno, “Operation of terahertz quantum cascade laser at 164K in pulsed mode and at 117 in continuos-wave mode,” Opt. Express 13(9), 3331–3339 (2005). [CrossRef] [PubMed]
  15. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K,” Opt. Express 16(5), 3242–3248 (2008). [CrossRef] [PubMed]
  16. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3(10), 586–590 (2009). [CrossRef]
  17. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides,” Opt. Lett. 30(21), 2909–2911 (2005). [CrossRef] [PubMed]
  18. R. D. Martin, S. Forouhar, S. Kea, R. J. Lang, R. G. Hunsperger, R. Tiberio, and P. F. Chapman, “CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode,” Photonn Technoln Lett IEEE 7(3), 244–246 (1995). [CrossRef]
  19. C. A. Balanis, Antenna Theory (Wiley – Interscience, 2005)
  20. S. J. Orfanidis, Electromagnetic waves and antennas http://www.ece.rutgers.edu/ ~orfanidi/ewa/, (2008).
  21. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3(12), 732–737 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited