OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 6 — Mar. 15, 2010
  • pp: 6408–6416

Light guiding in a slot waveguide that includes an additional confining core region

Yinying Xiao-Li  »View Author Affiliations

Optics Express, Vol. 18, Issue 6, pp. 6408-6416 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a design of a slot waveguide in which the core layer is orthogonally slotted to form a rectangular sub-core. While the overall guiding and coupling efficiency remains the same as a conventional slot waveguide, the field confinement is enhanced and appears two-dimensional. The waveguiding is controllable by selecting the intermediate index as well as various geometrical parameters. In addition, by changing different variables, the linear/nonlinear dispersion and birefringence can be tailored with extended ranges. Constant-dispersion points, where the dispersion is insensitive to size changes, are also demonstrated.

© 2010 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(230.7380) Optical devices : Waveguides, channeled
(230.7390) Optical devices : Waveguides, planar
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Integrated Optics

Original Manuscript: January 27, 2010
Revised Manuscript: March 2, 2010
Manuscript Accepted: March 3, 2010
Published: March 12, 2010

Yinying Xiao-Li, "Light guiding in a slot waveguide that includes an additional confining core region," Opt. Express 18, 6408-6416 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  2. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  3. N. N. Feng, R. Sun, L. C. Kimerling, and J. Michel, “Lossless strip-to-slot waveguide transformer,” Opt. Lett. 32(10), 1250–1252 (2007). [CrossRef] [PubMed]
  4. L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express 17(9), 7095–7101 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-9-7095 . [CrossRef] [PubMed]
  5. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17(11), 9282–9287 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-11-9282 . [CrossRef] [PubMed]
  6. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-8-74977 . [CrossRef] [PubMed]
  7. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007). [CrossRef] [PubMed]
  8. A. Hochman, P. Paneah, and Y. Leviatan, “Interaction between a waveguide-fed narrow slot and a nearby conducting strip in millimeter-wave scanning microscopy,” J. Appl. Phys. 88(10), 5987–5992 (2000). [CrossRef]
  9. K. Sendur, W. Challenger, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004). [CrossRef]
  10. J. V. Galan, P. Sanchis, J. Garcia, J. Blasco, A. Martinez, and J. Martí, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48(14), 2693–2696 (2009). [CrossRef] [PubMed]
  11. H. Zhou, W. Wang, J. Yang, M. Wang, and X. Jiang, “Intersected slot waveguide for dual polarized mode low-index confinement and its polarization conversion,” Group IV Photonics, Sorrento, 5th IEEE International Conference, Italy, WP19, 128–130 (2008).
  12. Z. Rao, L. Hesselink, and J. S. Harris, “High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 15(16), 10427–10438 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-16-10427 . [CrossRef] [PubMed]
  13. R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16(24), 20142–20148 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-24-20142 . [CrossRef] [PubMed]
  14. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  15. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  16. Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett. 34(1), 16–18 (2009). [CrossRef]
  17. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-9-7519 . [CrossRef] [PubMed]
  18. P. S. Nayar, “Refractive index control of silicon nitride films prepared by radio-frequency reactive sputtering,” J. Vac. Sci. Technol. A 20(6), 2137–2139 (2002). [CrossRef]
  19. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31(9), 1295–1297 (2006). [CrossRef] [PubMed]
  20. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-10-4357 . [CrossRef] [PubMed]
  21. X. Liu, W. M. J. Green, X. Chen, I. W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood., “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33(24), 2889–2891 (2008). [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of optical Constants of Solid (Academic, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited