OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6447–6454

Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer

Hongpeng Liu, Dan Yu, Xuecong Li, Suhua Luo, Yongyuan Jiang, and Xiudong Sun  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 6447-6454 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dark enhancements of diffraction efficiency in single and multiple gratings are investigated theoretically and experimentally in phenanthrenequinone doped poly-(methyl methacrylate) materials. It is demonstrated a possibility to improve holographic characteristics of the material via the enhancement. Nearly 17-fold increment of diffraction efficiency is observed after exposure. The dependences of PQ’s concentration on the rate and increment of dark enhancement are achieved quantitatively. And the enhancement in multiplexing is presented as a simple and efficient method to improve response of the material and homogeneity of diffraction efficiency. PQ’s diffusion and enhancement process of refractive index modulation are simulated by a diffusion model for describing enhancement dynamics qualitatively and quantitatively. This study provides a significant foundation for the application of dark enhancement in holographic storage.

© 2010 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials

ToC Category:

Original Manuscript: December 14, 2009
Revised Manuscript: February 12, 2010
Manuscript Accepted: March 4, 2010
Published: March 15, 2010

Hongpeng Liu, Dan Yu, Xuecong Li, Suhua Luo, Yongyuan Jiang, and Xiudong Sun, "Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer," Opt. Express 18, 6447-6454 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Pu and D. Psaltis, “High-density recording ini photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996). [CrossRef] [PubMed]
  2. L. Dhar, K. Curtis, M. Tackitt, M. L. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23(21), 1710–1712 (1998). [CrossRef]
  3. E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45(29), 7661–7666 (2006). [CrossRef] [PubMed]
  4. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998). [CrossRef]
  5. S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000). [CrossRef]
  6. 6Y-N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004). [CrossRef]
  7. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006). [CrossRef]
  8. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001). [CrossRef]
  9. A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of Phenanthrenequinone in Poly(methyl methacrylate): Holographic Measurements,” Polymer Sci. Ser. A. 38, 56–63 (1996).
  10. A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002). [CrossRef]
  11. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15(14), 8543–8549 (2007). [CrossRef] [PubMed]
  12. V. Matusevich, A. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Holographic volume absorption grating in glass-like polymer recording material,” Opt. Express 16(3), 1552–1558 (2008). [CrossRef] [PubMed]
  13. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,” Opt. Lett. 33(6), 566–568 (2008). [CrossRef] [PubMed]
  14. H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009). [CrossRef]
  15. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005). [CrossRef]
  16. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of dupont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41(17), 3427–3435 (2002). [CrossRef] [PubMed]
  17. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009). [CrossRef] [PubMed]
  18. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010). [CrossRef]
  19. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000). [CrossRef]
  20. C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express 17, 18279–18291 (2009).
  21. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009). [CrossRef]
  22. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Modeling,” J. Opt. Soc. Am. B 26, 1746–1754 (2009). [CrossRef]
  23. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997). [CrossRef]
  24. J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model,” J. Opt. Soc. Am. B 21(8), 1443–1451 (2004). [CrossRef]
  25. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited