OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6455–6460

Laser turns silicon superwicking

A. Y. Vorobyev and Chunlei Guo  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6455-6460 (2010)
http://dx.doi.org/10.1364/OE.18.006455


View Full Text Article

Acrobat PDF (368 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using high-intensity femtosecond laser pulses, we create a novel surface pattern that transforms regular silicon to superwicking. Due to the created surface structure, water sprints vertically uphill in a gravity defying way. Our study of the liquid motion shows that the fast self-propelling motion of water is due to a supercapillary effect from the surface structures we created. The wicking dynamics in the produced surface structure is found to follow the classical square root of time dependence.

© 2010 OSA

OCIS Codes
(000.2690) General : General physics
(140.3390) Lasers and laser optics : Laser materials processing
(160.0160) Materials : Materials
(160.6000) Materials : Semiconductor materials
(230.4000) Optical devices : Microstructure fabrication
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Materials

History
Original Manuscript: December 17, 2009
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 11, 2010
Published: March 15, 2010

Citation
A. Y. Vorobyev and Chunlei Guo, "Laser turns silicon superwicking," Opt. Express 18, 6455-6460 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6455


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics – a review,” J. Micromech. Microeng. 3(4), 168–182 (1993). [CrossRef]
  2. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006). [CrossRef]
  3. P. Abgrall and A. M. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007). [CrossRef]
  4. K. F. Jensen, “Silicon-based microchemical systems: characteristics and applications,” MRS Bull. 31, 101–107 (2006).
  5. D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004). [CrossRef]
  6. R. N. Wenzel, “Surface roughness and contact angle,” J. Phys. Colloid Chem. 53(9), 1466–1467 (1949). [CrossRef]
  7. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944). [CrossRef]
  8. J. Bico, C. Tordeux, and D. Quere, “Rough wetting,” Europhys. Lett. 55(2), 214–220 (2001). [CrossRef]
  9. G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading,” Phys. Rev. Lett. 93(3), 036102 (2004). [CrossRef]
  10. K. M. Hay, M. I. Dragila, and J. Liburdy, “Theoretical model for the wetting of a rough surface,” J. Colloid Interface Sci. 325(2), 472–477 (2008). [CrossRef]
  11. A. Y. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009). [CrossRef]
  12. Supplementary video of water running vertically uphill on the surface of femtosecond laser-structured silicon as in Fig. 3(a)–(f) of the main article.
  13. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921). [CrossRef]
  14. L. R. Fisher and P. D. Lark, “An experimental study of the Washburn equation for liquid flow in very fine capillaries,” J. Colloid Interface Sci. 69(3), 486–492 (1979). [CrossRef]
  15. N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “Capillary filling speed of water in nanochannels,” Appl. Phys. Lett. 85(15), 3274–3276 (2004). [CrossRef]
  16. M. Stange, M. E. Dreyer, and H. J. Rath, “Capillary driven flow in circular cylindrical tubes,” Phys. Fluids 15(9), 2587–2601 (2003). [CrossRef]
  17. L. A. Romero and F. G. Yost, “Flow in an open channel capillary,” J. Fluid Mech. 322(-1), 109–129 (1996). [CrossRef]
  18. J. A. Mann, L. Romero, R. R. Rye, and F. G. Yost, “Flow of simple liquids down narrow ssV grooves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(4), 3967–3972 (1995). [CrossRef]
  19. R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996). [CrossRef]
  20. L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007). [CrossRef]
  21. S. Gerdes, A. M. Cazabat, and G. Strom, “The spreading of silicone oil droplets on a surface with parallel V-shaped grooves,” Langmuir 13(26), 7258–7264 (1997). [CrossRef]
  22. A. D. Dussaud, P. M. Adler, and A. Lips, “Liquid Transport in the Networked Microchannels of the Skin Surface,” Langmuir 19(18), 7341–7345 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited