OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6516–6521

Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects

Xiong-Rui Su, Wei Zhang, Li Zhou, Xiao-Niu Peng, and Qu-Quan Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6516-6521 (2010)
http://dx.doi.org/10.1364/OE.18.006516


View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrated plasmon-asssisted energy transfer (ET) between CdSe semiconductor quantum dots (QDs) self-assembled in a monolayer by using time-resolved μ-photoluminescence (PL) technique. The enhancements of PL intensity and ET efficiency were manipulated by adjusting thickness (Δ) of SiO2 coating on large Ag nanoparticles. The PL enhancement factor of the acceptor QDs and the PL intensity ratio of acceptor-to-donor reached their maxima ~ 47 and ~ 14 when Δ = 7 nm, the corresponding ET efficiency reached 86%. We also presented theoretical analysis based on the rate equation. The theoretical calculations agreed with experimental data and revealed interesting physics of multipole effect, and metal nanoparticle induced quench effect and plasmon-enhanced Förster ET.

© 2010 OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(260.2160) Physical optics : Energy transfer
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: January 4, 2010
Revised Manuscript: February 24, 2010
Manuscript Accepted: February 25, 2010
Published: March 15, 2010

Citation
Xiong-Rui Su, Wei Zhang, Li Zhou, Xiao-Niu Peng, and Qu-Quan Wang, "Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects," Opt. Express 18, 6516-6521 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6516


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003). [CrossRef] [PubMed]
  2. Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005). [CrossRef] [PubMed]
  3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007). [CrossRef]
  4. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008). [CrossRef]
  5. M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007). [CrossRef]
  6. T. Förster, In modern quantum chemistry: istanbul lectures. part III, Action of light and organic crystals; Sinanoglu, O., Ed.; Academic Press: New York, 1965, Part II. B.1, pp 93–137.
  7. C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008). [CrossRef]
  8. T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004). [CrossRef]
  9. S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002). [CrossRef] [PubMed]
  10. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002). [CrossRef]
  11. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004). [CrossRef] [PubMed]
  12. Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005). [CrossRef]
  13. B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008). [CrossRef] [PubMed]
  14. R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008). [CrossRef] [PubMed]
  15. K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008). [CrossRef] [PubMed]
  16. A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006). [CrossRef]
  17. J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984). [CrossRef]
  18. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002). [CrossRef] [PubMed]
  19. J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008). [CrossRef]
  20. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006). [CrossRef] [PubMed]
  21. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006). [CrossRef]
  22. X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985). [CrossRef]
  23. X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010). [CrossRef]
  24. X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006). [CrossRef] [PubMed]
  25. I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003). [CrossRef] [PubMed]
  26. B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005). [CrossRef]
  27. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968). [CrossRef]
  28. Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007). [CrossRef] [PubMed]
  29. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited