OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6545–6554

Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation

Nils Feth, Michael König, Martin Husnik, Kai Stannigel, Jens Niegemann, Kurt Busch, Martin Wegener, and Stefan Linden  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6545-6554 (2010)
http://dx.doi.org/10.1364/OE.18.006545


View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Extinction cross-section spectra of split-ring-resonator dimers have been measured at near-infrared frequencies with a sensitive spatial modulation technique. The resonance frequency of the dimer's coupled mode as well as its extinction cross-section and its quality factor depend on the relative orientation and separation of the two split-ring resonators. The findings can be interpreted in terms of electric and magnetic dipole-dipole interaction. Numerical calculations based on a Discontinuous Galerkin Time-Domain approach are in good agreement with the experiments and support our physical interpretation.

© 2010 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: January 15, 2010
Revised Manuscript: February 23, 2010
Manuscript Accepted: February 24, 2010
Published: March 15, 2010

Citation
Nils Feth, Michael König, Martin Husnik, Kai Stannigel, Jens Niegemann, Kurt Busch, Martin Wegener, and Stefan Linden, "Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation," Opt. Express 18, 6545-6554 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  2. S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, “Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,” Phys. Rev. Lett. 94(3), 037402–1 (2005). [CrossRef] [PubMed]
  3. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901–1 (2005). [CrossRef] [PubMed]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  5. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative Refractive Index at Optical Wavelengths,” Science 315(5808), 47–49 (2007). [CrossRef] [PubMed]
  6. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  8. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure,” Phys. Rev. Lett. 97(17), 177401–1 (2006). [CrossRef] [PubMed]
  9. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007). [CrossRef] [PubMed]
  10. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative Refractive Index in Chiral Metamaterials,” Phys. Rev. Lett. 102(2), 023901–1 (2009). [CrossRef] [PubMed]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  12. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008). [CrossRef]
  13. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics 3(3), 157–162 (2009). [CrossRef]
  14. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules,” Adv. Mater. 20(23), 4521–4525 (2008). [CrossRef]
  15. M. Decker, S. Linden, and M. Wegener, “Coupling effects in low-symmetry planar split-ring resonator arrays,” Opt. Lett. 34(10), 1579–1581 (2009). [CrossRef] [PubMed]
  16. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays,” Phys. Rev. Lett. 103(21), 213902 (2009). [CrossRef]
  17. M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, “Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment,” Electron. Lett. 39(2), 215–217 (2003). [CrossRef]
  18. O. Sydoruk, O. Zhuromskyy, E. Shamonina, and L. Solymar, “Phonon-like dispersion curves of magnetoinductive waves,” Appl. Phys. Lett. 87(7), 072501–1 (2005). [CrossRef]
  19. G. Dolling, M. Wegener, A. Schädle, S. Burger, and S. Linden, “Observation of magnetization waves in negative-index photonic metamaterials,” Appl. Phys. Lett. 89(23), 231118–1 (2006). [CrossRef]
  20. M. Decker, S. Burger, S. Linden, and M. Wegener, “Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects,” Phys. Rev. B 80(19), 193102 (2009). [CrossRef]
  21. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical Properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003). [CrossRef]
  22. K. H. Su, Q. H. Wie, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3(8), 1087–1090 (2003). [CrossRef]
  23. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries,” Nano Lett. 9(4), 1651–1658 (2009). [CrossRef] [PubMed]
  24. C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7(2), 318–322 (2007). [CrossRef] [PubMed]
  25. P. Olk, J. Renger, M. T. Wenzel, and L. M. Eng, “Distance dependent spectral tuning of two coupled metal nanoparticles,” Nano Lett. 8(4), 1174–1178 (2008). [CrossRef] [PubMed]
  26. F. Hesmer, E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, “Coupling mechanisms for split ring resonators: Theory and experiment,” Phys. Status Solidi 244(4), 1170–1175 (2007). [CrossRef]
  27. A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallée, J. R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, “Direct measurement of the single-metal-cluster optical absorption,” Phys. Rev. Lett. 93(12), 127401–1 (2004). [CrossRef] [PubMed]
  28. O. L. Muskens, N. Del Fatti, F. Vallée, J. R. Huntzinger, P. Billaud, and M. Broyer, “Single-metal nanoparticle absorption spectroscopy and optical characterization,” Appl. Phys. Lett. 88(6), 063109–1 (2006). [CrossRef]
  29. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute Extinction Cross Section of Individual Magnetic Split-Ring Resonators,” Nat. Photonics 2(10), 614–617 (2008). [CrossRef]
  30. J. S. Hesthaven and T. Warburton, “Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell's equations,” J. Comput. Phys. 181(1), 186–221 (2002). [CrossRef]
  31. J. Niegemann, M. König, K. Stannigel, and K. Busch, “Higher-order time-domain methods for the analysis of nano-photonic systems,” Photon. Nanostruct. - Fundamentals Appl. 7(1), 2–11 (2009). [CrossRef]
  32. K. Stannigel, M. König, J. Niegemann, and K. Busch, “Discontinuous Galerkin time-domain computations of metallic nanostructures,” Opt. Express 17(17), 14934–14947 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-17-14934 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited