OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6693–6702

A level-set procedure for the design of electromagnetic metamaterials

Shiwei Zhou, Wei Li, Guangyong Sun, and Qing Li  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6693-6702 (2010)
http://dx.doi.org/10.1364/OE.18.006693


View Full Text Article

Enhanced HTML    Acrobat PDF (307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Achieving negative permittivity and negative permeability signifies a key topic of research in the design of metamaterials. This paper introduces a level-set based topology optimization method, in which the interface between the vacuum and metal phases is implicitly expressed by the zero-level contour of a higher dimensional level-set function. Following a sensitivity analysis, the optimization maximizes the objective based on the normal direction of the level-set function and induced current flow, thereby generating the desirable patterns of current flow on metal surface. As a benchmark example, the U-shaped structure and its variations are obtained from the level-set topology optimization. Numerical examples demonstrate that both negative permittivity and negative permeability can be attained.

© 2010 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: October 15, 2009
Revised Manuscript: February 5, 2010
Manuscript Accepted: March 6, 2010
Published: March 17, 2010

Citation
Shiwei Zhou, Wei Li, Guangyong Sun, and Qing Li, "A level-set procedure for the design of electromagnetic metamaterials," Opt. Express 18, 6693-6702 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6693


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  3. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. USPEKI 10(4), 509–514 (1968). [CrossRef]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  6. M. P. Bendsøe, and O. Sigmund, Topology Optimisation: theory, methods, and applications (Springer, Berlin; New York, 2003).
  7. D. H. Kwon and D. H. Werner, “Low-index metamaterial designs in the visible spectrum,” Opt. Express 15(15), 9267–9272 (2007). [CrossRef] [PubMed]
  8. P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, “Synthesis design of artificial magnetic metamaterials using a genetic algorithm,” Opt. Express 16(17), 12806–12818 (2008). [CrossRef] [PubMed]
  9. J. A. Bossard, S. Yun, D. H. Werner, and T. S. Mayer, “Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms,” Opt. Express 2009(17), 14771–14779 (2009). [CrossRef]
  10. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008). [CrossRef]
  11. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  12. Q. Li, G. P. Steven, O. M. Querin, and Y. M. Xie, “Shape and topology design for heat conduction by evolutionary structural optimisation,” Int. J. Heat Mass Transfer 42(17), 3361–3371 (1999). [CrossRef]
  13. G. P. Steven, Q. Li, and Y. M. Xie, “Evolutionary topology and shape design for general physical field problems,” Comput. Mech. 26(2), 129–139 (2000). [CrossRef]
  14. S. W. Zhou and Q. Li, “The relation of constant mean curvature surfaces to multiphase composites with extremal thermal conductivity,” J. Phys. D Appl. Phys. 40(19), 6083–6093 (2007). [CrossRef]
  15. M. Zhou and G. I. N. Rozvany, “The COC algorithm. II: Topological, geometrical and generalized shape optimization,” Comput. Methods Appl. Mech. Eng. 89(1-3), 309–336 (1991). [CrossRef]
  16. S. Osher and J. A. Sethian, “Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79(1), 12–49 (1988). [CrossRef]
  17. G. Allaire, F. Jouve, and A. M. Toader, “Structural optimization using sensitivity analysis and a level-set method,” J. Comput. Phys. 194(1), 363–393 (2004). [CrossRef]
  18. M. Y. Wang, X. M. Wang, and D. M. Guo, “A level set method for structural topology optimization,” Comput. Methods Appl. Mech. Eng. 192(1-2), 227–246 (2003). [CrossRef]
  19. S. W. Zhou and Q. Li, “A variational level set method for the topology optimization of steady-state Navier-Stokes flow,” J. Comput. Phys. 227(24), 10178–10195 (2008). [CrossRef]
  20. M. Burger and S. J. Osher, “A survey on level set methods for inverse problems and optimal design,” Eur. J. Appl. Math. 16(2), 263–301 (2005). [CrossRef]
  21. O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Probl. 22(4), R67–R131 (2006). [CrossRef]
  22. A. W. Maue, “On the formulation of a general scattering problem by means of an integral equation,” Z. Phys. 126, 601–618 (1949). [CrossRef]
  23. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: Theoretical and experimental investigations,” Phys. Rev. B 75, 041102 041101/041104 (2007). [CrossRef]
  24. Y. M. Xie and G. P. Steven, “A simple evolutionary procedure for structural optimization,” Comput. Struc. 49(5), 885–896 (1993). [CrossRef]
  25. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 Terahertz,” Science 306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  26. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005). [CrossRef] [PubMed]
  27. G. Lubkowski, R. Schuhmann, and T. Weiland, “Extraction of effective metamaterial parameters by parameter fitting of dispersive models,” Microwave Optical Tech. Lett. 49(2), 285–288 (2007). [CrossRef]
  28. R. F. Harrington, Field Computation by the Moment Methods (IEEE Press, New York, 1993).
  29. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited