OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6722–6739

Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers

Jonathan Hu, Curtis R. Menyuk, L. Brandon Shaw, Jasbinder S. Sanghera, and Ishwar D. Aggarwal  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 6722-6739 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (587 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe in detail a procedure for maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers and the physics behind this procedure. First, we determine the key parameters that govern the design. Second, we find the conditions for the fiber to be endlessly single-mode; the fiber should be endlessly single-mode to maintain high nonlinearity and low coupling loss. We find that supercontinuum generation in As2Se3 fibers proceeds in two stages — an initial stage that is dominated by four-wave mixing and a later stage that is dominated by the Raman-induced soliton self-frequency shift. Third, we determine the conditions to maximize the Stokes wavelength that is generated by four-wave mixing in the initial stage. Finally, we put all these pieces together to maximize the bandwidth. We show that it is possible to generate an optical bandwidth of more than 4 μm with an input pump wavelength of 2.5 μm using an As2Se3 fiber with an air-hole-diameter-to-pitch ratio of 0.4 and a pitch of 3 μm. Obtaining this bandwidth requires a careful choice of the fiber’s waveguide parameters and the pulse’s peak power and duration, which determine respectively the fiber’s dispersion and nonlinearity.

© 2010 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: November 20, 2009
Revised Manuscript: March 2, 2010
Manuscript Accepted: March 5, 2010
Published: March 17, 2010

Jonathan Hu, Curtis R. Menyuk, L. Brandon Shaw, Jasbinder S. Sanghera, and Ishwar D. Aggarwal, "Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers," Opt. Express 18, 6722-6739 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  2. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  3. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-20-1083. [PubMed]
  4. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007). [CrossRef]
  5. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7161. [CrossRef] [PubMed]
  6. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "Midinfrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006). [CrossRef] [PubMed]
  7. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, A. Zakel, J. Mauricio, "10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation," IEEE J. Sel. Top. Quantum Electron. 15, 422-4342009. [CrossRef]
  8. J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, S. (S.) Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Broadband IR supercontinuum generation using single crystal sapphire fibers," Opt. Express 16, 4085-4093 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4085. [CrossRef] [PubMed]
  9. L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, "IR supercontinuum generation in As-Se photonic crystal fiber," in Proc. Advanced Solid State Photonics, Vienna, Austria, paper TuC5 (2005).
  10. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, "Nonsilica glass for holey fibers," J. Lightwave Technol. 23, 2046-2054 (2005). [CrossRef]
  11. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003). [CrossRef] [PubMed]
  12. V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, "Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities," J. Am. Ceram. Soc. 85, 2849-2851 (2002). [CrossRef]
  13. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989). [CrossRef]
  14. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Raman response function and supercontinuum generation in chalcogenide fiber," in Proc. Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, paper CMDD2, (2008).
  15. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Supercontinuum generation in an As2Se3-based chalcogenide PCF using four-wave mixing and soliton self-frequency shift," in Proc. Conference on Optical Fiber Communications (OFC), San Diego, CA, paper OWU6, (2009).
  16. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  17. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  18. L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007). [CrossRef] [PubMed]
  19. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004). [CrossRef]
  20. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry, John Wiley & Sons, Inc., New York, 1999.
  21. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003). [CrossRef]
  22. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003). [CrossRef] [PubMed]
  23. M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005). [CrossRef]
  24. M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445. [CrossRef] [PubMed]
  25. C. Xia, M. Kumar, M. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-865. [CrossRef] [PubMed]
  26. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  27. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173. [CrossRef] [PubMed]
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  29. K. Saitoh and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol. 23, 3580-3590 (2005). [CrossRef]
  30. M. Koshiba, "Full-vector analysis of photonic crystal fibers using the finite element method," IEICE Trans. Electron. 85-C, 881-888 (2002).
  31. M. Koshiba and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Opt. Lett. 291739-1741, (2004). [CrossRef] [PubMed]
  32. N. A. Mortensen, "Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers," Opt. Lett. 30, 1455-1457 (2005). [CrossRef] [PubMed]
  33. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2001).
  34. M. H. Frosz, T. Sorensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006). [CrossRef]
  35. G. Genty, "Supercontinuum generation in microstructured fibers and novel optical measurement techniques," Ph.D. Dissertation, Helsinki University of Technology, Espoo, Finland.
  36. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-4026. [CrossRef] [PubMed]
  37. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986). [CrossRef] [PubMed]
  38. C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006). [CrossRef]
  39. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9391. [CrossRef] [PubMed]
  40. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653-657 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2553 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited