OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6767–6778

Jones matrix formalism for the theory of picosecond shear acoustic pulse detection

Denis Mounier, Pascal Picart, Philippe Babilotte, Pascal Ruello, Jean-Marc Breteau, Thomas Pézeril, Gwenaëlle Vaudel, Mansour Kouyaté, and Vitalyi Gusev  »View Author Affiliations

Optics Express, Vol. 18, Issue 7, pp. 6767-6778 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical analysis of the transient optical reflectivity of a sample by a normalized Jones matrix is presented. The off-diagonal components of the normalized matrix are identified with the complex rotation of the polarization ellipse. Transient optical polarimetry is a relevant technique to detect shear acoustic strain pulses propagating normally to the surface of an optically isotropic sample. Moreover, polarimetry has a selective sensitivity to shear waves, as this technique cannot detect longitudinal waves that propagate normally to the sample surface.

© 2010 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(320.0320) Ultrafast optics : Ultrafast optics
(320.5390) Ultrafast optics : Picosecond phenomena
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Ultrafast Optics

Original Manuscript: December 22, 2009
Revised Manuscript: February 5, 2010
Manuscript Accepted: February 8, 2010
Published: March 17, 2010

Denis Mounier, Pascal Picart, Philippe Babilotte, Pascal Ruello, Jean-Marc Breteau, Thomas Pézeril, Gwenaëlle Vaudel, Mansour Kouyaté, and Vitalyi Gusev, "Jones matrix formalism for the theory of picosecond shear acoustic pulse detection," Opt. Express 18, 6767-6778 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Opaque film metrology. http://www.rudolphtech.com/TechnologyOverview_TechnologyOpaqueFilms.aspx .
  2. MetaPULSE System, http://www.rudolphtech.com/MetrologyProduct_ProductMetaPULSE.aspx .
  3. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34(6), 4129–4138 (1986). [CrossRef]
  4. B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Interferometric detection of hypersound in modulated structures,” Prog. Nat. Sci. 6, S444–S448 (1996).
  5. B. Perrin, C. Rossignol, B. Bonello, and J.-C. Jeannet, “Interferometic detection in picosecond ultrasonics,” Physica B 263-264(1-4), 571–573 (1999). [CrossRef]
  6. D. H. Hurley and O. B. Wright, “Detection of ultrafast phenomena by use of a modified Sagnac interferometer,” Opt. Lett. 24(18), 1305–1307 (1999). [CrossRef]
  7. T. Tachizaki, T. Muroya, O. Matsuda, Y. Sugawara, D. H. Hurley, and O. B. Wright, “Scanning ultrafast Sagnac interferometry for imaging two-dimensional surface wave propagation,” Rev. Sci. Instrum. 77(4), 043713 (2006). [CrossRef]
  8. M. Nikoonahad, S. Lee, and H. Wang, “Picosecond photoacoustics using common-path interferometry,” Appl. Phys. Lett. 76(4), 514–516 (2000). [CrossRef]
  9. O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69(11), 1668–1671 (1992). [CrossRef] [PubMed]
  10. N. Chigarev, C. Rossignol, and B. Audoin, “Surface displacement measured by beam distortion detection technique: Application to picosecond ultrasonics,” Rev. Sci. Instrum. 77(11), 114901 (2006). [CrossRef]
  11. D. H. Hurley, O. B. Wright, O. Matsuda, V. E. Gusev, and O. V. Kolosov, “Laser picosecond acoustics in isotropic and anisotropic materials,” Ultrasonics 38(1-8), 470–474 (2000). [CrossRef] [PubMed]
  12. T. Pezeril, C. Klieber, S. Andrieu, and K. A. Nelson, “Optical generation of gigahertz-frequency shear acoustic waves in liquid glycerol,” Phys. Rev. Lett. 102(10), 107402 (2009). [CrossRef] [PubMed]
  13. T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, “Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory,” Phys. Rev. B 75(17), 174307 (2007). [CrossRef]
  14. O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77(22), 224110 (2008). [CrossRef]
  15. T. Dehoux, N. Chigarev, C. Rossignol, and B. Audoin, “Three-dimensional elasto-optical interaction for reflectometric detection of diffracted acoustic fields in picosecond ultrasonics,” Phys. Rev. B 76(2), 024311 (2007). [CrossRef]
  16. D. Mounier, E. Morozov, P. Ruello, J.-M. Breteau, P. Picart, and V. Gusev, “Detection of shear picosecond acoustic pulses by transient femtosecond polarimetry,” Eur. Phys. J. Spec. Top. 153(1), 243–246 (2008). [CrossRef]
  17. D. Mounier, E. Morosov, P. Ruello, M. Edely, P. Babilotte, C. Mechri, J.-M. Breteau, and V. Gusev, “Application of transient femtosecond polarimetry/ellipsometry technique in picosecond laser ultrasonics,” J. Phys.: Conference Series 92, 012179 (2007). [CrossRef]
  18. C.-H. Chang, R. K. Heilmann, M. L. Schattenburg, and P. Glenn, “Design of a double-pass shear mode acousto-optic modulator,” Rev. Sci. Instrum. 79(3), 033104 (2008). [CrossRef] [PubMed]
  19. Application of acousto-optic devices for spectral imaging system. http://www.goochandhousego.com/files/Technical%20Essay%20AO%20Devices%20for%20spectral%20imaging%20systems.pdf .
  20. R. M. A. Azzam, and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, Elsevier, Amsterdam–London–New York–Tokyo, 1987).
  21. L. Guidoni, E. Beaurepaire, and J.-Y. Bigot, “Magneto-optics in the Ultrafast Regime: Thermalization of Spin Populations in Ferromagnetic Films,” Phys. Rev. Lett. 89, 017401–1 (2002). [CrossRef] [PubMed]
  22. J. Li, M.-S. Lee, W. He, B. Redeker, A. Remhof, E. Amaladass, C. Hassel, and T. Eimüller, “Magnetic imaging with femtosecond temporal resolution,” Rev. Sci. Instrum. 80(7), 073703 (2009). [CrossRef] [PubMed]
  23. K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, “Picosecond Optical Sampling of GaAs Integrated Circuits,” IEEE J. Quantum Electron. 24(2), 198–220 (1988). [CrossRef]
  24. J. Warnock, D. D. Awschalom, and M. W. Shafer, “Orientational behavior of molecular liquids in restricted geometries,” Phys. Rev. B 34(1), 475–478 (1986). [CrossRef]
  25. O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with ultrashort optical pulses,” Phys. Rev. Lett. 93(9), 095501 (2004). [CrossRef] [PubMed]
  26. T. C. Zhu, H. J. Maris, and J. Tauc, “Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440 GHz,” Phys. Rev. B 44(9), 4281–4289 (1991). [CrossRef]
  27. B. A. Auld, Acoustic Waves and Fields in Solids, volume 1 (John Wiley & Sons, New York, 1973)
  28. J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1957)
  29. D. W. Berreman, “Optics of stratified and Anisotropic Media: 4 x 4- matrix Formulation,” J. Opt. Soc. Am. 62(4), 502–510 (1972). [CrossRef]
  30. P. Yeh, “Optics of anisotropic layered media: a new 4 x 4 matrix algebra,” Surf. Sci. 96(1-3), 41–53 (1980). [CrossRef]
  31. O. Matsuda and O. B. Wright, “Theory of Detection of Shear Strain Pulses with Laser Picosecond Acoustics,” Anal. Sci. 17(Special Issue), s216–s218 (2001).
  32. CRC Hand Book of Physics and Chemistry (2004).
  33. P. Etchegoin, J. Kircher, M. Cardona, C. Grein, and E. Bustarret, “Piezo-optics of GaAs,” Phys. Rev. B 46(23), 15139–15149 (1992). [CrossRef]
  34. O. Matsuda and O. B. Wright, “Laser picosecond acoustics with oblique probe light incidence,” Rev. Sci. Instrum. 74(1), 895–897 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited