OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6797–6810

Analysis of two-element zoom systems based on variable power lenses

Antonin Miks and Jiri Novak  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6797-6810 (2010)
http://dx.doi.org/10.1364/OE.18.006797


View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Traditional optical systems with variable optical characteristics are composed of several optical elements that can be shifted with respect to each other mechanically. A motorized change of position of individual elements (or group of elements) then makes possible to achieve desired optical properties of such zoom lens systems. A disadvantage of such systems is the fact that individual elements of these optical systems have to move very precisely, which results in high requirements on mechanical construction of such optical systems. Our work is focused on a paraxial and third order aberration analysis of possible optical designs of two-element zoom lens systems based on variable power lenses with a variable focal length. First order chromatic aberrations of the variable power lenses are also described. Computer simulation examples are presented to show that such zoom lens systems without motorized movements of lenses appear to be promising for the next-generation of zoom lens design.

© 2010 OSA

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(110.0110) Imaging systems : Imaging systems
(220.3630) Optical design and fabrication : Lenses
(110.1080) Imaging systems : Active or adaptive optics

History
Original Manuscript: January 11, 2010
Revised Manuscript: March 12, 2010
Manuscript Accepted: March 12, 2010
Published: March 17, 2010

Citation
Antonin Miks and Jiri Novak, "Analysis of two-element zoom systems based on variable power lenses," Opt. Express 18, 6797-6810 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6797


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. F. Ray, Applied photographic optics, (Focal Press, New York 2002).
  2. W. Smith, Modern optical engineering, 4th Ed. (McGraw-Hill, New York 2007).
  3. M. Born, and E. Wolf, Principles of optics, (Oxford University Press, New York 1964).
  4. P. Mouroulis, and J. Macdonald, Geometrical optics and optical design (Oxford University Press, New York 1997).
  5. A. Miks, Applied optics (Czech Technical University Press, Prague 2009). [PubMed]
  6. M. Herzberger, Modern geometrical optics (Interscience Publishers, Inc., New York 1958).
  7. A. D. Clark, Zoom lenses (Adam Hilger, London, 1973).
  8. K. Yamaji, Progres in optics, Vol.VI (North-Holland Publishing Co., Amsterdam 1967).
  9. A. Mikš, J. Novák, and P. Novák, “Method of zoom lens design,” Appl. Opt. 47(32), 6088–6098 (2008). [CrossRef] [PubMed]
  10. A. Mikš, “Modification of the formulas for third-order aberration coefficients,” J. Opt. Soc. Am. A 19(9), 1867–1871 (2002). [CrossRef]
  11. A. Walther, “Angle eikonals for a perfect zoom system,” J. Opt. Soc. Am. A 18(8), 1968–1971 (2001). [CrossRef]
  12. G. Wooters and E. W. Silvertooth, “Optically compensated zoom lens,” J. Opt. Soc. Am. 55(4), 347–351 (1965). [CrossRef]
  13. D. F. Kienholz, “The design of a zoom lens with a large computer,” Appl. Opt. 9(6), 1443–1452 (1970). [CrossRef] [PubMed]
  14. A. V. Grinkevich, “Version of an objective with variable focal length,” J. Opt. Technol. 73, 343–345 (2006). [CrossRef]
  15. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 1: Four-component Type,” Appl. Opt. 21(12), 2174–2183 (1982). [CrossRef] [PubMed]
  16. G. H. Matter and E. T. Luszcz, “A family of optically compensated zoom lenses,” Appl. Opt. 9(4), 844–848 (1970). [CrossRef] [PubMed]
  17. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses 1: Four-component type Errata,” Appl. Opt. 21(21), 3805 (1982). [CrossRef] [PubMed]
  18. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 2: Generalization of Yamaji type V,” Appl. Opt. 21(22), 4045–4053 (1982). [CrossRef] [PubMed]
  19. K. Tanaka, “Paraxial analysis of mechanically compensated zoom lenses. 3: Five-component type,” Appl. Opt. 22(4), 541–553 (1983). [CrossRef] [PubMed]
  20. D. F. Horne, Lens mechanism technology (Adam Hilger, Bristol 1975)
  21. R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling, and N. Peyghambarian, “Adjustable fluidic lenses for ophthalmic corrections,” Opt. Lett. 34(4), 515–517 (2009). [CrossRef] [PubMed]
  22. F. C. Wippermann, P. Schreiber, A. Bräuer, and P. Craen, “Bifocal liquid lens zoom objective for mobile phone applications,” Proc. SPIE 6501, 650109 (2007). [CrossRef]
  23. F. S. Tsai, S. H. Cho, Y. H. Lo, B. Vasko, and J. Vasko, “Miniaturized universal imaging device using fluidic lens,” Opt. Lett. 33(3), 291–293 (2008). [CrossRef] [PubMed]
  24. B. H. W. Hendriks, S. Kuiper, M. A. J. van As, C. A. Renders, and T. W. Tukker, “Variable liquid lenses for electronic products,” Proc. SPIE 6034, 603402 (2006). [CrossRef]
  25. http://www.varioptic.com
  26. http://www.optotune.com/
  27. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84(23), 4789–4791 (2004). [CrossRef]
  28. M. Ye, M. Noguchi, B. Wang, and S. Sato, “Zoom lens system without moving elements realised using liquid crystal lenses,” Electron. Lett. 45(12), 646–648 (2009). [CrossRef]
  29. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249(1-3), 175–182 (2005). [CrossRef]
  30. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007). [CrossRef] [PubMed]
  31. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16(16), 11847–11857 (2008). [CrossRef] [PubMed]
  32. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000). [CrossRef]
  33. B. H. W. Hendriks, S. Kuiper, M. A. J. As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems,” Opt. Rev. 12(3), 255–259 (2005). [CrossRef]
  34. R. Peng, J. Chen, and S. Zhuang, “Electrowetting-actuated zoom lens with spherical-interface liquid lenses,” J. Opt. Soc. Am. A 25(11), 2644–2650 (2008). [CrossRef]
  35. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15(21), 14146–14154 (2007). [CrossRef] [PubMed]
  36. R. Peng, J. Chen, Ch. Zhu, and S. Zhuang, “Design of a zoom lens without motorized optical elements,” Opt. Express 15(11), 6664–6669 (2007). [CrossRef] [PubMed]
  37. Z. Wang, Y. Xu, and Y. Zhao, “Aberration analyses of liquid zooming lenses without moving parts,” Opt. Commun. 275(1), 22–26 (2007). [CrossRef]
  38. J.-H. Sun, B.-R. Hsueh, Y.-Ch. Fang, J. MacDonald, and C. C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48(9), 1741–1757 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited