OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6871–6876

Adjustable phase resonances in a compound metallic grating with perpendicular cuts

Xiang Zhai, Jian-Qiang Liu, Meng-Dong He, Ling-Ling Wang, Shuangchun Wen, and Dianyuan Fan  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6871-6876 (2010)
http://dx.doi.org/10.1364/OE.18.006871


View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a compound metallic grating with perpendicular cuts in each slit and investigate its optical transmission property theoretically. The odd and even waveguide modes exhibit different behaviors when the cuts are set asymmetrically in the slits. Particularly, it is shown that the transmission dips of transmission spectrum for this compound periodic structure can be realized alternately by shifting the position of cuts in the slit. The effect of cut size on the phase resonances in the proposed metallic grating is also identified, and the underlying physics is discussed by the simulated field and phase maps.

© 2010 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

History
Original Manuscript: February 3, 2010
Revised Manuscript: March 16, 2010
Manuscript Accepted: March 17, 2010
Published: March 18, 2010

Citation
Xiang Zhai, Jian-Qiang Liu, Meng-Dong He, Ling-Ling Wang, Shuangchun Wen, and Dianyuan Fan, "Adjustable phase resonances in a compound metallic grating with perpendicular cuts," Opt. Express 18, 6871-6876 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays, Nature (London) 391, 667-669 (1998). [CrossRef]
  2. Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88(5), 057403 (2005). [CrossRef]
  3. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83(14), 2845-2848 (1999). [CrossRef]
  4. Y. Q. Ye and Y. Jin, "Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film," Phys. Rev. E 80(3), 036606 (2009). [CrossRef]
  5. B. Sturman and E. Podivilov, "Theory of extraordinary light transmission through arrays of subwavelength slits," Phys. Rev. B 77(7), 075106 (2008). [CrossRef]
  6. D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95(21), 217402 (2005). [CrossRef] [PubMed]
  7. D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74(4) 046606 (2006). [CrossRef]
  8. M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94(4), 091107 (2009). [CrossRef]
  9. H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, "Phase resonances on metal gratings of identical, equally spaced alternately tapered slits," Appl. Phys. Lett. 95(4), 041905 (2009). [CrossRef]
  10. J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Zhe, L. Chen, Q. Wan, and J. Yao, "Tailoring optical transmission via the arrangement of compound subwavelength hole arrays," Opt. Express,  17(3), 1859-1864 (2009). [CrossRef] [PubMed]
  11. J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009). [CrossRef]
  12. Z. Liu and G. Jin, "Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays," J. Appl. Phys. 106(6), 063122 (2009). [CrossRef]
  13. Y. Wang, Y. Wang, Y. Zhang, and S. Liu,"Transmission through metallic array slits with perpendicular cuts," Opt. Express 17(7), 5014-5022 (2009). [CrossRef] [PubMed]
  14. Y. B. Chen, J. S. Chen, and P. F. Hsu, "Impacts of geometric modifications on infrared optical responses of metallic slit arrays," Opt. Express 17(12), 9789-9803 (2009). [CrossRef] [PubMed]
  15. Z. J. Sun and X. L. Zuo, "Tuning resonant optical transmission of metallic nanoslit arrays with embedded microcavities," Opt. Lett. 34(9), 1411-1413 (2009). [CrossRef] [PubMed]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston. 2000).
  17. M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008). [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants and Solids (Academic, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited