OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6885–6890

Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses

Qiming Zhang, Han Lin, Baohua Jia, Lei Xu, and Min Gu  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6885-6890 (2010)
http://dx.doi.org/10.1364/OE.18.006885


View Full Text Article

Enhanced HTML    Acrobat PDF (380 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the fabrication of sub-wavelength nanostructures on the surface of As2S3 chalcogenide glasses by appropriately controlling the irradiation condition of single-beam direct femtosecond laser writing. Nanogratings with a period of 180 nm were realized by multipulse irradiation. More importantly controllable nanoholes as small as 200 nm in diameter (one quarter of the illumination wavelength) were, for the first time, achieved in As2S3 using direct laser writing by single-pulse irradiation.

© 2010 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Micromachining

History
Original Manuscript: February 17, 2010
Revised Manuscript: March 14, 2010
Manuscript Accepted: March 17, 2010
Published: March 18, 2010

Citation
Qiming Zhang, Han Lin, Baohua Jia, Lei Xu, and Min Gu, "Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses," Opt. Express 18, 6885-6890 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6885


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003). [CrossRef]
  2. C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev. DIO:10.1002/lpor.200810072.
  3. E. Nicoletti, G. Zhou, B. Jia, M. J. Ventura, D. Bulla, B. Luther-Davies, and M. Gu, “Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 33(20), 2311–2313 (2008). [CrossRef] [PubMed]
  4. S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004). [CrossRef]
  5. J. Zarzycki, Glasses and Amorphous Materials, (Wiley, New York, 2001) Chap. 7.
  6. Z. L. Samson, K. F. MacDonald, F. De Angelise, G. Adamo, K. Knight, C. C. Huang, D. W. Hewak, E. Di Fabrizio, and N. I. Zheludev, “Chalcogenide glass metamaterial optical switch,” FiO 2009 San Jose 11–15 Oct 2009, PDPB1 (Postdeadline).
  7. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999). [CrossRef]
  8. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007). [CrossRef]
  9. G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007). [CrossRef]
  10. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003). [CrossRef] [PubMed]
  11. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006). [CrossRef] [PubMed]
  12. A. Borowiec and H. H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003). [CrossRef]
  13. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009). [CrossRef]
  14. A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009). [CrossRef]
  15. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005). [CrossRef] [PubMed]
  16. G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006). [CrossRef]
  17. A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited