OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6914–6921

Broadband unidirectional electromagnetic mode at interface of anti-parallel magnetized media

Haibin Zhu and Chun Jiang  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6914-6921 (2010)
http://dx.doi.org/10.1364/OE.18.006914


View Full Text Article

Enhanced HTML    Acrobat PDF (911 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a kind of broadband electromagnetic boundary mode at an interface of anti-parallel magnetized media, which can only propagate in one direction perpendicular to the magnetization and parallel to the interface. The unidirectionality of this mode originates from the permeability or permittivity tensor introduced by magnetization. We theoretically and numerically analyze the existence of the unidirectional mode, and point out that this mode can exist in both gyromagnetic and gyroelectric medium. We also propose a one-way waveguide based on this unidirectional mode, which may realize a new kind of electromagnetic isolation differing from those existing ones.

© 2010 OSA

OCIS Codes
(230.3810) Optical devices : Magneto-optic systems
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 2, 2009
Revised Manuscript: January 15, 2010
Manuscript Accepted: January 18, 2010
Published: March 19, 2010

Citation
Haibin Zhu and Chun Jiang, "Broadband unidirectional electromagnetic mode at interface of anti-parallel magnetized media," Opt. Express 18, 6914-6921 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6914


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Belov, S. A. Tretyakov, and A. J. Viitanen, “Nonreciprocal microwave band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(1), 016608 (2002). [CrossRef] [PubMed]
  2. C. Brosseau, S. Mallégol, P. Quéffelec, and J. Ben Youssef, “Nonreciprocal electromagnetic properties of nanocomposites at microwave frequencies,” Phys. Rev. B 70(9), 092401 (2004). [CrossRef]
  3. P. K. Amiri, B. Rejaei, Z. Yan, M. Vroubel, L. Dok Won, and S. X. Wang, “Nonreciprocal Spin Waves in Co-Ta-Zr Films and Multilayers,” IEEE Trans. Magn. 45(10), 4215–4218 (2009). [CrossRef]
  4. B. K. Kuanr, V. Veerakumar, R. Marson, S. R. Mishra, R. E. Camley, and Z. Celinski, “Nonreciprocal microwave devices based on magnetic nanowires,” Appl. Phys. Lett. 94(20), 202505 (2009). [CrossRef]
  5. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008). [CrossRef] [PubMed]
  6. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire Photonic Circuit Elements,” Nano Lett. 4(10), 1981–1985 (2004). [CrossRef]
  7. Y. Okamura, H. Inuzuka, T. Kikuchi, and S. Yamamoto, “Nonreciprocal propagation in magnetooptic YIG rib waveguides,” J. Lightwave Technol. 4(7), 711–714 (1986). [CrossRef]
  8. B. L. Johnson and R. E. Camley, “Nonreciprocal propagation of surface waves in quasiperiodic superlattices,” Phys. Rev. B 44(3), 1225–1231 (1991). [CrossRef]
  9. A. F. Popkov, M. Fehndrich, O. Zhuromskyy, and H. Dötsch, “Nonreciprocal light channeling in a film by a magnetic nonuniformity akin to a Néel domain wall,” J. Appl. Phys. 84(6), 3020 (1998). [CrossRef]
  10. A. Figotin and I. Vitebsky, “Nonreciprocal magnetic photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(6), 066609 (2001). [CrossRef] [PubMed]
  11. R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, and H. Dötsch, “Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides,” Opt. Lett. 29(9), 941–943 (2004). [CrossRef] [PubMed]
  12. W. V. Parys, B. Moeyersoon, D. V. Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, “Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator,” Appl. Phys. Lett. 88(7), 071115 (2006). [CrossRef]
  13. Y. Shoji, I. W. Hsieh, J. R. M. Osgood, and T. Mizumoto, “Polarization-Independent Magneto-Optical Waveguide Isolator Using TM-Mode Nonreciprocal Phase Shift,” J. Lightwave Technol. 25(10), 3108–3113 (2007). [CrossRef]
  14. A. Potts, W. Zhang, and D. M. Bagnall, “Nonreciprocal diffraction through dielectric gratings with two-dimensional chirality,” Phys. Rev. A 77(4), 043816 (2008). [CrossRef]
  15. T. R. Zaman, X. Guo, and R. J. Ram, “Semiconductor Waveguide Isolators,” J. Lightwave Technol. 26(2), 291–301 (2008). [CrossRef]
  16. H. Shimizu, S. Yoshida, and S. Goto, “Semiconductor Waveguide Optical Isolators Towards Larger Optical Isolation Utilizing Nonreciprocal Phase Shift by Ferromagnetic Co,” IEEE Photon. Technol. Lett. 20(18), 1554–1556 (2008). [CrossRef]
  17. J. Montoya, K. Parameswaran, J. Hensley, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106(2), 023108 (2009). [CrossRef]
  18. A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17(1), 278–292 (2009). [CrossRef] [PubMed]
  19. N. Kono, K. Kakihara, K. Saitoh, and M. Koshiba, “Nonreciprocal microresonators for the miniaturization of optical waveguide isolators,” Opt. Express 15(12), 7737–7751 (2007). [CrossRef] [PubMed]
  20. Y. Shoji, T. Mizumoto, H. Yokoi, I.-W. Hsieh, J. Richard, and M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008). [CrossRef]
  21. L. Tang, S. M. Drezdzon, and T. Yoshie, “Single-mode waveguide optical isolator based on direction-dependent cutoff frequency,” Opt. Express 16(20), 16202–16208 (2008). [CrossRef] [PubMed]
  22. S. M. Drezdzon and T. Yoshie, “On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff,” Opt. Express 17(11), 9276–9281 (2009). [CrossRef] [PubMed]
  23. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009). [CrossRef]
  24. J. Fujita, M. Levy, J. R. M. Osgood, L. Wilkens, and H. Dötsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76(16), 2158–2160 (2000). [CrossRef]
  25. Y. Shoji and T. Mizumoto, “Wideband operation of Mach-Zehnder interferomertic magneto-optical isolator using phase adjustment,” Opt. Express 15(20), 13446–13450 (2007). [CrossRef] [PubMed]
  26. H. Zhou, X. Jiang, J. Yang, Q. Zhou, T. Yu, and M. Wang, “Wavelength-Selective Optical Waveguide Isolator Based on Nonreciprocal Ring-Coupled Mach?Zehnder Interferometer,” J. Lightwave Technol. 26(17), 3166–3172 (2008). [CrossRef]
  27. Z. Yu and S. Fan, “Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions,” Appl. Phys. Lett. 94(17), 171116 (2009). [CrossRef]
  28. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008). [CrossRef] [PubMed]
  29. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009). [CrossRef] [PubMed]
  30. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008). [CrossRef] [PubMed]
  31. R. E. Camley, “Nonreciprocal Surface wave,” Surf. Sci. Rep. 7(3-4), 103–187 (1987). [CrossRef]
  32. J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76(15), 153402 (2007). [CrossRef]
  33. A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998). [CrossRef]
  34. O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, “Magnetooptical Waveguides with Polarization-Independent Nonreciprocal PhaseShift,” J. Lightwave Technol. 19(2), 214–221 (2001). [CrossRef]
  35. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78(2), 023804 (2008). [CrossRef]
  36. J. R. Goldman, T. D. Ladd, F. Yamaguchi, and Y. Yamamoto, “Magnet designs for a crystal-lattice quantum computer,” Appl. Phys., A Mater. Sci. Process. 71, 11–17 (2000).
  37. A. Taflove, and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method (Artech House, Inc., Norwood, MA, 2005).
  38. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004). [CrossRef] [PubMed]
  39. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A 76(2), 023811 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited