OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 7 — Mar. 29, 2010
  • pp: 6922–6928

Influence of turbulence on the effective radius of curvature of radial Gaussian array beams

Xiaoling Ji, Halil T. Eyyuboğlu, and Yahya Baykal  »View Author Affiliations


Optics Express, Vol. 18, Issue 7, pp. 6922-6928 (2010)
http://dx.doi.org/10.1364/OE.18.006922


View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The analytical formula for the effective radius of curvature of radial Gaussian array beams propagating through atmospheric turbulence is derived, where coherent and incoherent beam combinations are considered. The influence of turbulence on the effective radius of curvature of radial Gaussian array beams is studied by using numerical calculation examples.

© 2010 OSA

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(140.3295) Lasers and laser optics : Laser beam characterization
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: January 5, 2010
Revised Manuscript: February 28, 2010
Manuscript Accepted: March 11, 2010
Published: March 19, 2010

Citation
Xiaoling Ji, Halil T. Eyyuboğlu, and Yahya Baykal, "Influence of turbulence on the effective radius of curvature of radial Gaussian array beams," Opt. Express 18, 6922-6928 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-7-6922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Fante, “Wave propagation in random media: a systems approach,” in Progress in Optics 22, E. Wolf, ed., (Elsevier, Amsterdam, 1985), Chap. 6.
  2. L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 1998).
  3. A. Dogariu and S. Amarande, “Propagation of partially coherent beams: turbulence-induced degradation,” Opt. Lett. 28(1), 10–12 (2003). [CrossRef] [PubMed]
  4. Y. Cai and S. He, “Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere,” Appl. Phys. Lett. 89(4), 041117 (2006). [CrossRef]
  5. J. Pu and O. Korotkova, “Propagation of the degree of cross-polarization of a stochastic electromagnetic beam through the turbulent atmosphere,” Opt. Commun. 282(9), 1691–1698 (2009). [CrossRef]
  6. X. Ji, X. Chen, S. Chen, X. Li, and B. Lü, “Influence of atmospheric turbulence on the spatial correlation properties of partially coherent flat-topped beams,” J. Opt. Soc. Am. A 24(11), 3554–3563 (2007). [CrossRef]
  7. H. T. Eyyuboglu, Y. Cai, and Y. Baykal, “Spectral shifts of general beams in turbulent media,” J. Opt. A, Pure Appl. Opt. 10(1), 015005 (2008). [CrossRef]
  8. X. Du, D. Zhao, and O. Korotkova, “Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere,” Opt. Express 15(25), 16909–16915 (2007). [CrossRef] [PubMed]
  9. M. A. Porras, J. Alda and E. Bernabeu, “Complex beam parameter and ABCD law for non-Gaussian and nonspherical light beams,” Appl. Opt. 31(30), 6389–6402 (1992). [CrossRef] [PubMed]
  10. J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” J. Opt. Soc. Am. A 19(9), 1794–1802 (2002). [CrossRef]
  11. H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagating characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron. 32(3), 400–407 (1996). [CrossRef]
  12. W. D. Bilida, J. D. Strohschein, and H. J. J. Seguin, “High-power 24 channel radial array slab RF-excited carbon dioxide laser,” in Gas and Chemical Lasers and Applications, H. R. C. Sze and E. A. Dorko, eds., Proc. SPIE 2987, 13–21 (1997).
  13. Y. Zhu, D. Zhao, and X. Du, “Propagation of stochastic Gaussian-Schell model array beams in turbulent atmosphere,” Opt. Express 16(22), 18437–18442 (2008). [CrossRef] [PubMed]
  14. Y. Cai, Y. Chen, H. T. Eyyuboglu, and Y. Baykal, “Propagation of laser array beams in a turbulent atmosphere,” Appl. Phys. B 88(3), 467–475 (2007). [CrossRef]
  15. H. T. Eyyuboğlu, Y. Baykal, and Y. Cai, “Scintillations of laser array beams,” Appl. Phys. B 91(2), 265–271 (2008). [CrossRef]
  16. X. Ji and X. Li, “Directionality of Gaussian array beams propagating in atmospheric turbulence,” J. Opt. Soc. Am. A 26(2), 236–243 (2009). [CrossRef]
  17. X. Li, X. Ji, H. T. Eyyuboğlu, and Y. Baykal, “Turbulence distance of radial Gaussian Schell-model array beams,” Appl. Phys. B 98(2-3), 557–565 (2010). [CrossRef]
  18. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24(9), S1027–1049 (1992). [CrossRef]
  19. Y. Dan and B. Zhang, “Second moments of partially coherent beams in atmospheric turbulence,” Opt. Lett. 34(5), 563–565 (2009). [CrossRef] [PubMed]
  20. To derive Eq. (4), we first introduce the new variables of integration by setting u=(r′2+r′1)/2 and v=r′2−r′1. Then we use the formulae∫exp(−i2πxs)dx=δ(s), ∫x2exp(−i2πxs)dx=−δ″(s)/(2π)2, ∫f(x)δ″(x)dx=f″(0) and ∫f(x)δ(x)dx=f(0), where δ denotes the Dirac delta function and δ″ is its second derivative, and f is an arbitrary function and f″ is its second derivative.
  21. J. D. Strohschein, H. J. Seguin, and C. E. Capjack, “Beam propagation constants for a radial laser array,” Appl. Opt. 37(6), 1045–1048 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 3 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited